首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress and mitochondrial dysfunction signify important biochemical events associated with the loss of dopaminergic neurons in Parkinson's disease (PD). Studies using in vitro and in vivo PD models or tissues from diseased patients have demonstrated a selective inhibition of mitochondrial NADH dehydrogenase (Complex I of the OXPHOS electron transport chain) that affects normal mitochondrial physiology leading to neuronal death. In an earlier study, we demonstrated that oxidative stress due to glutathione depletion in dopaminergic cells, a hallmark of PD, leads to Complex I inhibition via cysteine thiol oxidation (Jha et al. (2000) J. Biol. Chem. 275, 26096-26101). Complex I is a approximately 980-kDa multimeric enzyme spanning the inner mitochondrial membrane comprising at least 45 protein subunits. As a prerequisite to investigating modifications to Complex I using a rodent disease model for PD, we developed two independent rapid and mild isolation procedures based on sucrose gradient fractionation and immunoprecipitation to isolate Complex I from mouse brain and a cultured rat mesencephalic dopaminergic neuronal cell line. Both protocols are capable of purifying Complex I from small amounts of rodent tissue and cell cultures. Blue Native gel electrophoresis, one-dimensional and two-dimensional SDS-PAGE were employed to assess the purity and composition of isolated Complex I followed by extensive mass spectrometric characterization. Altogether, 41 of 45 rodent Complex I subunits achieved MS/MS sequence coverage. To our knowledge, this study provides the first detailed mass spectrometric analysis of neuronal Complex I proteins and provides a means to investigate the role of cysteine oxidation and other posttranslational modifications in pathologies associated with mitochondrial dysfunction.  相似文献   

2.
Variants of ribonuclease inhibitor that resist oxidation   总被引:1,自引:0,他引:1       下载免费PDF全文
Human ribonuclease inhibitor (hRI) is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonucleases. hRI has 32 cysteine residues. The oxidation of these cysteine residues to form disulfide bonds is a rapid, cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence: Cys94 and Cys95, and Cys328 and Cys329. A cystine formed from such adjacent cysteine residues would likely contain a perturbing cis peptide bond within its eight-membered ring, which would disrupt the structure of hRI and could facilitate further oxidation. We find that replacing Cys328 and Cys329 with alanine residues has little effect on the affinity of hRI for bovine pancreatic ribonuclease A (RNase A), but increases its resistance to oxidation by 10- to 15-fold. Similar effects are observed for the single variants, C328A hRI and C329A hRI, suggesting that oxidation resistance arises from the inability to form a Cys328-Cys329 disulfide bond. Replacing Cys94 and Cys95 with alanine residues increases oxidation resistance to a lesser extent, and decreases the affinity of hRI for RNase A. The C328A, C329A, and C328A/C329A variants are likely to be more useful than wild-type hRI for inhibiting pancreatic-type ribonucleases in vitro and in vivo. We conclude that replacing adjacent cysteine residues can confer oxidation resistance in a protein.  相似文献   

3.
Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441–445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu2+ ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50–90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10–20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus.  相似文献   

4.
The radical scavenger 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO(*)) and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were used in conjunction with mass spectrometry to identify the protein-based radical sites of the H(2)O(2)-tolerant ascorbate peroxidase (APX) of the red alga Galdieria partita and the H(2)O(2)-sensitive stromal APX of tobacco. A cysteine residue in the vicinity of the propionate side chain of heme in both enzymes was labeled with TEMPO(*) and DMPO in an H(2)O(2)-dependent manner, indicating that these cysteine residues form thiyl radicals through interaction of APX with H(2)O(2). TEMPO(*) bound to the cysteine thiyl radicals, and sulfinylated and sulfonylated them. Other oxidized cysteine residues were found in both APXs. Experiments with a cysteine-to-serine point mutation showed that formation of TEMPO adducts and subsequent oxidation of the cysteine residue located near the propionate group of heme leads to loss of enzyme activity, in particular in the Galdieria APX. When treated with glutathione and H(2)O(2), both cysteine residues in both enzymes were glutathionylated. These results suggest that, under oxidative stress in vivo, cysteine oxidation is involved in the inactivation of APXs in addition to the proposed H(2)O(2)-mediated crosslinking of heme to the distal tryptophan residue [Kitajima S, Shimaoka T, Kurioka M & Yokota A (2007) FEBS J274, 3013-3020], and that glutathione protects APX from irreversible oxidation of the cysteine thiol and loss of enzyme activity by binding to the cysteine thiol group.  相似文献   

5.
Sulfatases carry at their catalytic site a unique post-translational modification, an alpha-formylglycine residue that is essential for enzyme activity. Formylglycine is generated by oxidation of a conserved cysteine or, in some prokaryotic sulfatases, serine residue. In eukaryotes, this oxidation occurs in the endoplasmic reticulum during or shortly after import of the nascent sulfatase polypeptide. The modification of arylsulfatase A was studied in vitro and was found to be directed by a short linear sequence, CTPSR, starting with the cysteine to be modified. Mutational analyses showed that the cysteine, proline and arginine are the key residues within this motif, whereas formylglycine formation tolerated the individual, but not the simultaneous substitution of the threonine or serine. The CTPSR motif was transferred to a heterologous protein leading to low-efficient formylglycine formation. The efficiency reached control values when seven additional residues (AALLTGR) directly following the CTPSR motif in arylsulfatase A were present. Mutating up to four residues simultaneously within this heptamer sequence inhibited the modification only moderately. AALLTGR may, therefore, have an auxiliary function in presenting the core motif to the modifying enzyme. Within the two motifs, the key residues are fully, and other residues are highly conserved among all known members of the sulfatase family.  相似文献   

6.
Templeton DJ  Aye MS  Rady J  Xu F  Cross JV 《PloS one》2010,5(11):e15012
Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity.  相似文献   

7.
Hepatitis delta virus expresses two essential proteins, the small and large delta antigens, and both are required for viral propagation. Proper function of each protein depends on the presence of a common amino-terminal multimerization domain. A crystal structure, solved using a peptide fragment that contained residues 12 to 60, depicts the formation of an octameric ring composed of antiparallel coiled-coil dimers. Because this crystal structure was solved for only a fragment of the delta antigens, it is unknown whether octamers actually form in vivo at physiological protein concentrations and in the context of either intact delta antigen. To test the relevance of the octameric structure, we developed a new method to probe coiled-coil structures in vivo. We generated a panel of mutants containing cysteine substitutions at strategic locations within the predicted monomer-monomer interface and the dimer-dimer interface. Since the small delta antigen contains no cysteine residues, treatment of cell extracts with a mild oxidizing reagent was expected to induce disulfide bond formation only when the appropriate pairs of cysteine substitution mutants were coexpressed. We indeed found that, in vivo, both the small and large delta antigens assembled as antiparallel coiled-coil dimers. Likewise, we found that both proteins could assume an octameric quaternary structure in vivo. Finally, during the course of these experiments, we found that unprenylated large delta antigen molecules could be disulfide cross-linked via the sole cysteine residue located within the carboxy terminus. Therefore, in vivo, the C terminus likely provides an additional site of protein-protein interaction for the large delta antigen.  相似文献   

8.
9.
Lipid peroxidation is one of the consequences of environmental stress in plants and leads to the accumulation of highly toxic, reactive aldehydes. One of the processes to detoxify these aldehydes is their oxidation into carboxylic acids catalyzed by NAD(P)+-dependent ALDHs (aldehyde dehydrogenases). We investigated kinetic parameters of two Arabidopsis thaliana family 3 ALDHs, the cytosolic ALDH3H1 and the chloroplastic isoform ALDH3I1. Both enzymes had similar substrate specificity and oxidized saturated aliphatic aldehydes. Catalytic efficiencies improved with the increase of carbon chain length. Both enzymes were also able to oxidize α,β-unsaturated aldehydes, but not aromatic aldehydes. Activity of ALDH3H1 was NAD+-dependent, whereas ALDH3I1 was able to use NAD+ and NADP+. An unusual isoleucine residue within the coenzyme-binding cleft was responsible for the NAD+-dependence of ALDH3H1. Engineering the coenzyme-binding environment of ALDH3I1 elucidated the influence of the surrounding amino acids. Enzyme activities of both ALDHs were redox-sensitive. Inhibition was correlated with oxidation of both catalytic and non-catalytic cysteine residues in addition to homodimer formation. Dimerization and inactivation could be reversed by reducing agents. Mutant analysis showed that cysteine residues mediating homodimerization are located in the N-terminal region. Modelling of the protein structures revealed that the redox-sensitive cysteine residues are located at the surfaces of the subunits.  相似文献   

10.
The role of cysteine residues in the oxidation of ferritin   总被引:3,自引:0,他引:3  
We have shown that ferritin is oxidized during iron loading using its own ferroxidase activity and that this oxidation results in its aggregation (Welch et al., Free Radic. Biol. Med. 31:999-1006; 2001). In this study we determined the role of cysteine residues in the oxidation of ferritin. Loading iron into recombinant human ferritin by its own ferroxidase activity decreased its conjugation by a cysteine specific spin label, indicating that cysteine residues were altered during iron loading. Using LC/MS, we demonstrated that tryptic peptides of ferritin that contained cysteine residues were susceptible to modification as a result of iron loading. To assess the role of cysteine residues in the oxidation of ferritin, we used site-directed mutagenesis to engineer variants of human ferritin H chain homomers where the cysteines were substituted with other amino acids. The cysteine at position 90, which is located at the end of the BC-loop, appeared to be critical for the formation of ferritin aggregates during iron loading. We also provide evidence that dityrosine moieties are formed during iron loading into ferritin by its own ferroxidase activity and that the dityrosine formation is dependent upon the oxidation of cysteine residues, especially cysteine 90. In conclusion, cysteine residues play an integral role in the oxidation of ferritin and are essential for the formation of ferritin aggregates.  相似文献   

11.
NADH:ubiquinone oxidoreductases (Complex I) contain a subunit, TYKY in the bovine enzyme and NuoI in the enzyme from Rhodobacter capsulatus, which is assumed to bind two [4Fe-4S] clusters because it contains two sets of conserved cysteine motifs similar to those found in the 2[4Fe-4S] ferredoxins. It was recently shown that the TYKY subunit is not an ordinary 2[4Fe-4S] ferredoxin, but has a unique amino acid sequence, which is only found in NAD(P)H:quinone oxidoreductases and certain membrane-bound [NiFe]-hydrogenases expected to be involved in redox-linked proton translocation [FEBS Lett. 485 (2000) 1]. We have generated a set of R. capsulatus mutants in which five out of the eight conserved cysteine residues in NuoI were replaced by other amino acids. The resulting mutants fell into three categories with virtually no, intermediate or quite normal Complex I activities. EPR-spectroscopic analysis of the membranes of the C67S and C106S mutants, two mutants belonging to the second and third group, respectively, showed a specific 50% decrease of the EPR signal attributed to cluster N2. It is concluded that the NuoI (TYKY) subunit binds two clusters N2, called N2a and N2b, which exhibit very similar spectral features when analyzed by X-band EPR spectroscopy.  相似文献   

12.
Retroviral proteases are translated as a part of Gag-related polyproteins, and are released and activated during particle release. Mason-Pfizer monkey virus (M-PMV) Gag polyproteins assemble into immature capsids within the cytoplasm of the host cells; however, their processing occurs only after transport to the plasma membrane and subsequent release. Thus, the activity of M-PMV protease is expected to be highly regulated during the replication cycle. It has been proposed that reversible oxidation of protease cysteine residues might be responsible for such regulation. We show that cysteine residues in M-PMV protease can form an intramolecular S-S bridge. The disulfide bridge shifts the monomer/dimer equilibrium in favor of the dimer, and increases the proteolytic activity significantly. To investigate the role of this disulfide bridge in virus maturation and replication, we engineered an M-PMV clone in which both protease cysteine residues were replaced by alanine (M-PMV(PRC7A/C106A)). Surprisingly, the cysteine residues were dispensable for Gag polyprotein processing within the virus, indicating that even low levels of protease activity are sufficient for polyprotein processing during maturation. However, the long-term infectivity of M-PMV(PRC7A/C106A) was noticeably compromised. These results show clearly that the proposed redox mechanism does not rely solely on the formation of the stabilizing S-S bridge in the protease. Thus, in addition to the protease disulfide bridge, reversible oxidation of cysteine and/or methionine residues in other domains of the Gag polyprotein or in related cellular proteins must be involved in the regulation of maturation.  相似文献   

13.
14.
The nucleocapsid, or core particle, of hepatitis B virus is formed by 180 subunits of the core protein, which contains Cys at positions 48, 61, 107 and 183, the latter constituting the C terminus. Upon adventitious oxidation, some or all of these cysteine residues participate in the formation of disulphide bridges, leading to polymerization of the subunits within the particle. To utilize the cysteine residues as topological probes, we reduced the number of possible intersubunit crosslinks by replacing these residues individually, or in all combinations, by serine. A corresponding set of variants was constructed within the context of an assembly-competent core protein variant that lacks the highly basic C-terminal region. Analysis, by polyacrylamide gel electrophoresis under non-reducing conditions, of the oxidative crosslinking products formed by the wild-type and mutant proteins expressed in Escherichia coli, revealed a clear distinction between the three N-proximal, and the C-terminal Cys: N-proximal Cys formed intermolecular disulphide bonds only with other N-proximal cysteine residues, leading to dimerization. Cys48 and Cys61, in contrast to Cys107, could be crosslinked to the homologous cysteine residues in a second subunit, and are therefore located at the dimer interface. Cys 183 predominantly formed disulphide bonds with Cys183 in subunits other than those crosslinked by the N-proximal cysteine residues. Hence, the polymers generated by oxidation of the wild-type protein are S-S-linked dimeric N-terminal domains interconnected via Cys183/Cys183 disulphide bonds. The intermolecular crosslinks between the N-proximal cysteine residues were apparently the same in the C-terminally truncated and in the full-length proteins, corroborating the model in which the N-terminal domain and the C terminus of the HBV core protein form two distinct and structurally independent entities. The strong tendency of the N-terminal domain for dimeric interactions suggests that core protein dimers are the major intermediates in hepatitis B virus nucleocapsid assembly.  相似文献   

15.
The human DnaJ homolog Hdj2 is a cochaperone containing a cysteine-rich zinc finger domain. We identified a specific interaction of Hdj2 with the cellular redox enzyme thioredoxin using a yeast two-hybrid assay and a coimmunoprecipitation assay, thereby investigating how the redox environment of the cell regulates Hdj2 function. In reconstitution experiments with Hsc70, we found that treatment with H2O2 caused the oxidative inactivation of Hdj2 cochaperone activity. Hdj2 inactivation paralleled the oxidation of cysteine thiols and concomitant release of coordinated zinc, suggesting a role of cysteine residues in the zinc finger domain of Hdj2 as a redox sensor of chaperone-mediated protein-folding machinery. H2O2-induced negative regulation of Hdj2 cochaperone activity was also confirmed in mammalian cells using luciferase as a foreign reporter cotransfected with Hsc70 and Hdj2. The in vivo oxidation of cysteine residues in Hdj2 was detected only in thioredoxin-knockdown cells, implying that thioredoxin is involved in the in vivo reduction. The oxidative inactivation of Hdj2 was reversible. Wild-type thioredoxin notably recovered the oxidatively inactivated Hdj2 activity accompanied by the reincorporation of zinc, whereas the catalytically inactive mutant thioredoxin (Cys32Ser/Cys35Ser) did not. Taken together, we propose that oxidation and reduction reversibly regulate Hdj2 function in response to the redox states of the cell.  相似文献   

16.
Mitochondrial NADH fluorescence has been a useful tool in evaluating mitochondrial energetics both in vitro and in vivo. Mitochondrial NADH fluorescence is enhanced several-fold in the matrix through extended fluorescence lifetimes (EFL). However, the actual binding sites responsible for NADH EFL are unknown. We tested the hypothesis that NADH binding to Complex I is a significant source of mitochondrial NADH fluorescence enhancement. To test this hypothesis, the effect of Complex I binding on NADH fluorescence efficiency was evaluated in purified protein, and in native gels of the entire porcine heart mitochondria proteome. To avoid the oxidation of NADH in these preparations, we conducted the binding experiments under anoxic conditions in a specially designed apparatus. Purified intact Complex I enhanced NADH fluorescence in native gels approximately 10-fold. However, no enhancement was detected in denatured individual Complex I subunit proteins. In the Clear and Ghost native gels of the entire mitochondrial proteome, NADH fluorescence enhancement was localized to regions where NADH oxidation occurred in the presence of oxygen. Inhibitor and mass spectroscopy studies revealed that the fluorescence enhancement was specific to Complex I proteins. No fluorescence enhancement was detected for MDH or other dehydrogenases in this assay system, at physiological mole fractions of the matrix proteins. These data suggest that NADH associated with Complex I significantly contributes to the overall mitochondrial NADH fluorescence signal and provides an explanation for the well established close correlation of mitochondrial NADH fluorescence and the metabolic state.  相似文献   

17.
S Hekimi  W Burkhart  M Moyer  E Fowler  M O'Shea 《Neuron》1989,2(4):1363-1368
A prohormone (P1) of locust adipokinetic hormone I (AKH I) is shown here to be a homodimer of a 41 residue subunit called the A-chain. The A-chain, from the N terminal, consists of AKH I (10 amino acids starting with pyroglutamate) followed by a Gly-Lys-Arg processing site and then a 28 residues called the alpha chain containing a single cysteine and a potential Arg-Lys processing site. When processed each molecule of the homodimer precursor yields two copies of AKH I and one alpha chain homodimer. We call the alpha-alpha homodimer product of P1 processing AKH precursor related peptide 1 or APRP 1. The Arg-Lys dibasic pair found within the alpha chain is not cleaved in vivo. Our results show that neuropeptide precursors can be dimers and that dimer products can be synthesized by processing of a preformed dimer precursor rather than by dimerization of independent subunits.  相似文献   

18.
The cDNA, coding for the first metal-binding domain (MBD1) of Menkes protein, was cloned into the T7-system based vector, pCA. The T7 lysozyme-encoding plasmid, pLysS, is shown to be crucial for expression, suggesting that the protein is toxic to the cells. Adding copper to the growth medium did not affect the plasmid stability. MBD1 is purified in two steps with a typical yield of 12 mg.L-1. Menkes protein, a P-type ATPase, contains a sequence GMXCXSC that is repeated six times, at the N-terminus. The paired cysteine residues are involved in metal binding. MBD1 has only two cysteine residues, which can exist as free thiol groups (reduced), as a disulphide bond (oxidized) or bound to a metal ion [e.g. Cu(I)-MBD1]. These three MBD1 forms have been investigated using CD. No major spectral change was seen between the different MBD1 forms, indicating that the folding is not changed upon metal binding. A copper-bound MBD1 was also studied by EPR, and the lack of an EPR signal suggests that the oxidation state of copper bound to MBD1 is Cu(I). Cu(I) binding studies were performed by equilibrium dialysis and revealed a stoichiometry of 1 : 1 and an apparent Kd = 46 microM. Oxidized MBD1, however, is not able to bind copper. Different copper complexes were investigated for their ability to reconstitute apo-MBD1. Given the same total copper concentration CuCl43- was superior to Cu(I)-thiourea (structural analogue of metallothionein) and Cu(I)-glutathione (used at fivefold higher copper concentration) although the latter two were able to partially reconstitute apo-MBD1. Cu(II) was not able to reconstitute apo-MBD1, presumably due to Cu(II)-induced oxidation of the thiol groups. Based on our results, glutathione and/or metallothionein are likely candidates for the in vivo incorporation of copper to Menkes protein.  相似文献   

19.
Analysis of the amino acid sequences of subunits NuoM and NuoN in the membrane domain of Complex I revealed a clear common pattern, including two lysines that are predicted to be located within the membrane, and which are important for quinone reductase activity. Site-directed mutations of the amino acid residues E144, K234, K265 and W243 in this pattern were introduced into the chromosomal gene nuoM of Escherichia coli Complex I. The activity of mutated Complex I was studied in both membranes and in purified Complex I. The quinone reductase activity was practically lost in K234A, K234R and E144A, decreased in W243A and K265A but unchanged in E144D. Complex I from all these mutants contained 1 mol tightly bound ubiquinone per mol FMN like wild type enzyme. The mutant enzymes E144D, W243A and K265A had wild type sensitivity to rolliniastatin and complete proton-pumping efficiency of Complex I. Remarkably, the subunits NuoL and NuoH in the membrane domain also appear to contain conserved lysine residues in transmembrane helices, which may give a clue of the mechanism of proton translocation. A tentative principle of proton translocation by Complex I is suggested based on electrostatic interactions of lysines in the membrane subunits.  相似文献   

20.
According to the 'mitochondrial theory of aging' it is expected that the activity of NADH Coenzyme Q reductase (Complex I) would be most severely affected among mitochondrial enzymes, since mitochondrial DNA encodes for 7 subunits of this enzyme. Being these subunits the site of binding of the acceptor substrate (Coenzyme Q) and of most inhibitors of the enzyme, it is also expected that subtle kinetic changes of quinone affinity and enzyme inhibition could develop in aging before an overall loss of activity would be observed.The overall activity of Complex I was decreased in several tissues from aged rats, nevertheless it was found that direct assay of Complex I using artificial quinone acceptors may underevaluate the enzyme activity. The most acceptable results could be obtained by applying the 'pool equation' to calculate Complex I activity from aerobic NADH oxidation; using this method it was found that the decrease in Complex I activity in mitochondria from old animals was greater than the activity calculated by direct assay of NADH Coenzyme Q reductase.A decrease of NADH oxidation and its rotenone sensitivity was observed in nonsynaptic mitochondria, but not in synaptic 'light' and 'heavy' mitochondria of brain cortex from aged rats.In a study of Complex I activity in human platelet membranes we found that the enzyme activity was unchanged but the titre for half-inhibition by rotenone was significantly increased in aged individuals and proposed this change as a suitable biomarker of aging and age-related diseases. (Mol Cell Biochem 174: 329–333, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号