首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen regulation of root branching   总被引:18,自引:0,他引:18  
BACKGROUND: Many plant species can modify their root architecture to enable them to forage for heterogeneously distributed nutrients in the soil. The foraging response normally involves increased proliferation of lateral roots within nutrient-rich soil patches, but much remains to be understood about the signalling mechanisms that enable roots to sense variations in the external concentrations of different mineral nutrients and to modify their patterns of growth and development accordingly. SCOPE: In this review we consider different aspects of the way in which the nitrogen supply can modify root branching, focusing on Arabidopsis thaliana. Our current understanding of the mechanism of nitrate stimulation of lateral root growth and the role of the ANR1 gene are summarized. In addition, evidence supporting the possible role of auxin in regulating the systemic inhibition of early lateral root development by high rates of nitrate supply is presented. Finally, we examine recent evidence that an amino acid, L-glutamate, can act as an external signal to elicit complex changes in root growth and development. CONCLUSIONS: It is clear that plants have evolved sophisticated pathways for sensing and responding to changes in different components of the external nitrogen supply as well as their own internal nitrogen status. We speculate on the possibility that the effects elicited by external L-glutamate represent a novel form of foraging response that could potentially enhance a plant's ability to compete with its neighbours and micro-organisms for localized sources of organic nitrogen.  相似文献   

2.
Polyamines (PAs) are nitrogenous molecules which play a well-established role in most cellular processes during growth and development under physiological or biotic/abiotic stress conditions. The molecular mode(s) of PA action have only recently started to be unveiled, and comprehensive models for their molecular interactions have been proposed. Their multiple roles are exerted, at least partially, through signalling by hydrogen peroxide (H(2)O(2)), which is generated by the oxidation/back-conversion of PAs by copper amine oxidases and PA oxidases. Accumulating evidence suggests that in plants the cellular titres of PAs are affected by other nitrogenous compounds. Here, we discuss the state of the art on the possible nitrogen flow in PAs, their interconnection with nitrogen metabolism, as well as the signalling roles of PA-derived H(2)O(2) during some developmental processes and stress responses.  相似文献   

3.
Phosphate sensing in higher plants   总被引:32,自引:0,他引:32  
Phosphate (Pi) plays a central role as reactant and effector molecule in plant cell metabolism. However, Pi is the least accessible macronutrient in many ecosystems and its low availability often limits plant growth. Plants have evolved an array of molecular and morphological adaptations to cope with Pi limitation, which include dramatic changes in gene expression and root development to facilitate Pi acquisition and recycling. Although physiological responses to Pi starvation have been increasingly studied and understood, the initial molecular events that monitor and transmit information on external and internal Pi status remain to be elucidated in plants. This review summarizes molecular and developmental Pi starvation responses of higher plants and the evidence for coordinated regulation of gene expression, followed by a discussion of the potential involvement of plant hormones in Pi sensing and of molecular genetic approaches to elucidate plant signalling of low Pi availability. Complementary genetic strategies in Arabidopsis thaliana have been developed that are expected to identify components of plant signal transduction pathways involved in Pi sensing. Innovative screening methods utilize reporter gene constructs, conditional growth on organophosphates and the inhibitory properties of the Pi analogue phosphite, which hold the promise for significant advances in our understanding of the complex mechanisms by which plants regulate Pi-starvation responses.  相似文献   

4.
We review the role of protein kinases in plant hormone-mediatedsignalling, nutrient signalling and cell cycle control and in the crosstalkbetween these different contributors to plant growth regulation. The areas ofhormone-mediated signalling covered include ABA-mediated responses to osmoticstress, wounding and pathogen attack, as well as ethylene and cytokininsignalling pathways. These areas involve members of several major protein kinasefamilies, including the SNFl-related protein kinase-2 (SnRK2) subfamily, thecalcium-dependent protein kinase (CDPK) family, the mitogen activated protein(MAP) kinase family, the glycogen synthase kinase (GSK)- 3/shaggy family and thereceptor-like protein kinase (RPK) family. In the section on nutrient signallingwe review the role of SnRK1 protein kinases in the global regulation of carbonmetabolism, including aspects of sugar sensing and assimilate partitioning, andwhat is known about nitrogen and sulphur nutrient signalling. In the cell cyclesection, we summarise progress in the elucidation of cell cycle control systemsin plants and discuss the interaction between cell cycle control anddevelopment. We expand further on the hypothesis of crosstalk between differentsignalling pathways in a separate section in which we discuss evidence forinteraction between plant growth regulators and the cell cycle, betweendifferent nutrient signalling pathways, between nutrient and cell cyclesignalling and between nutrient and ABA signalling.  相似文献   

5.
6.
Cell-cell communication in plants is essential for the correct co-ordination of reproduction, growth, and development. Studies to dissect this mode of communication have previously focussed primarily on the action of plant hormones as mediators of intercellular signalling. In animals, peptide signalling is a well-documented intercellular communication system, however, relatively little is known about this system in plants. In recent years, numerous reports have emerged about small, secreted peptides controlling different aspects of plant reproduction. Interestingly, most of these peptides are cysteine-rich, and there is convincing evidence suggesting multiple roles for related cysteine-rich peptides (CRPs) as signalling factors in developmental patterning as well as during plant pathogen responses and symbiosis. In this review, we discuss how CRPs are emerging as key signalling factors in regulating multiple aspects of vegetative growth and reproductive development in plants.  相似文献   

7.
Visible light is the basic energetic driver of plant biomass production through photosynthesis. The constantly fluctuating availability of light and other environmental factors means that the photosynthetic apparatus must be able to operate in a dynamic fashion appropriate to the prevailing conditions. Dynamic regulation is achieved through an array of homeostatic control mechanisms that both respond to and influence cellular energy and reductant status. In addition, light availability and quality are continuously monitored by plants through photoreceptors. Outside the laboratory growth room, it is within the context of complex changes in energy and signalling status that plants must regulate pathways to deal with biotic challenges, and this can be influenced by changes in the highly energetic photosynthetic pathways and in the turnover of the photosynthetic machinery. Because of this, defence responses are neither simple nor easily predictable, but rather conditioned by the nutritional and signalling status of the plant cell. This review discusses recent data and emerging concepts of how recognized defence pathways interact with and are influenced by light-dependent processes. Particular emphasis is placed on the potential roles of the chloroplast, photorespiration, and photoreceptor-associated pathways in regulating the outcome of interactions between plants and pathogenic organisms.  相似文献   

8.
一氧化氮(NO)是植物的重要生物活性分子,它参与植物生长发育的许多过程,如种子萌发、下胚轴伸长、叶扩展、根生长、侧根形成、细胞凋亡以及植物抗逆反应等。大量的证据表明,植物可以通过与动物NO合酶类似的酶产生NO。此外,植物还可通过硝酸还原酶产生NO。NO在植物中的信号传递途径仍不十分清楚,植物有可能采用与动物相类似的机制。由于植物的大多数生长发育现象都受到植物激素的调节和控制,NO与植物激素之间的关系也受到越来越多的关注。通过激素起作用可能是植物内源NO作用的机理之一。  相似文献   

9.
10.
植物一氧化氮(NO)研究进展   总被引:21,自引:0,他引:21  
一氧化氮(NO)是植物的重要生物活性分子,它参与植物生长发育的许多过程,如种子萌发、下胚轴伸长、叶扩展、根生长、侧根形成、细胞凋亡以及植物抗逆反应等。大量的证据表明,植物可以通过与动物NO合酶类似的酶产生NO。此外,植物还可通过硝酸还原酶产生NO。NO在植物中的信号传递途径仍不十分清楚,植物有可能采用与动物相类似的机制。由于植物的大多数生长发育现象都受到植物激素的调节和控制,NO与植物激素之间的关系也受到越来越多的关注。通过激素起作用可能是植物内源NO作用的机理之一。  相似文献   

11.
During their evolution, plants have acquired diverse capabilities to sense their environment and modify their growth and development as required. The versatile utilization of solar radiation for photosynthesis as well as a signal to coordinate developmental responses to the environment is an excellent example of such a capability. Specific light quality inputs are converted to developmental outputs mainly through hormonal signalling pathways. Accordingly, extensive interactions between light and the signalling pathways of every known plant hormone have been uncovered in recent years. One such interaction that has received recent attention and forms the focus of this review occurs between light and the signalling pathway of the jasmonate hormone with roles in regulating plant defence and development. Here the recent research that revealed new mechanistic insights into how plants might integrate light and jasmonate signals to modify their growth and development, especially when defending themselves from either pests, pathogens, or encroaching neighbours, is discussed.  相似文献   

12.
Herbivory-induced signalling in plants: perception and action   总被引:1,自引:0,他引:1  
Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses.  相似文献   

13.
The ability of plants to respond to a wide range of environmental stresses is highly flexible and finely balanced through the interaction of hormonal plant growth regulators and the redox signalling hub, which integrates information from the environment and cellular metabolism/physiology. Plant hormones produce reactive oxygen species (ROS) as second messengers in signalling cascades that convey information concerning changes in hormone concentrations and/or sensitivity to mediate a whole range of adaptive responses. Cellular redox buffering capacity that is determined largely by the abundance of ascorbate has a profound influence on the threshold at which hormone signalling is triggered and on the interactions between different hormones. Other antioxidants such as glutathione, glutaredoxins and thioredoxins are also central redox regulators of hormone signalling pathways. The complex network of cross-communication between oxidants and antioxidants in the redox signalling hub and the different hormone signalling pathways maximises productivity under stress-free situations and regulates plant growth, development, reproduction, programmed cell death and survival upon exposure to stress. This interactive network confers enormous regulatory potential because it allows plants to adapt to changing and often challenging conditions, while preventing boom or bust scenarios with regard to resources, ensuring that energy is produced and utilised in a safe and efficient manner.  相似文献   

14.
This review compares endophytic symbiotic and pathogenic root–microbe interactions and examines how the development of root structures elicited by various micro-organisms could have evolved by recruitment of existing plant developmental pathways. Plants are exposed to a multitude of soil micro-organisms which affect root development and performance. Their interactions can be of symbiotic and pathogenic nature, both of which can result in the formation of new root structures – how does the plant regulate the different outcomes of interactions with microbes? The idea that pathways activated in plant by micro-organisms could have been `hijacked' from plant developmental pathways is not new, it was essentially proposed by P. S. Nutman in 1948, but at that time, the molecular evidence to support that hypothesis was missing. Genetic evidence for overlaps between different plant–microbe interactions have previously been examined. This review compares the physiological and molecular plant responses to symbiotic rhizobia with those to arbuscular mycorrhizal fungi, pathogenic nematodes and the development of lateral roots and summarises evidence from both molecular and cellular studies for substantial overlaps in the signalling pathways underlying root–micro-organism interactions. A more difficult question has been why plant responses to micro-organisms are so similar, even though the outcomes are very different. Possible hypotheses for divergence of signalling pathways and future approaches to test these ideas are presented.  相似文献   

15.
Influence of environmental factors on stomatal development   总被引:6,自引:2,他引:6  
  相似文献   

16.
Light and temperature signal crosstalk in plant development   总被引:3,自引:0,他引:3  
Light and temperature are two of the most important environmental stimuli regulating plant development. Recent advances have suggested considerable interaction between these signalling pathways at the molecular level. Studies of both flowering and germination have shown the phytochrome family of plant photoreceptors to display altered functional hierarchies at different growth temperatures. The existence of common signalling components in both light and temperature sensing has additionally been proposed. More recently, light quality signals have been shown to regulate plant-freezing tolerance in an ambient temperature-dependent manner. Together, these data suggest that complex crosstalk between light-signalling and temperature-signalling pathways is fundamental to the growth and development of plants in natural environments.  相似文献   

17.
The effect of potassium nutrition on pest and disease resistance in plants   总被引:4,自引:0,他引:4  
Providing a fast growing world population with sufficient food while preserving ecological and energy resources of our planet is one of the biggest challenges in this century. Optimized management of chemical fertilizers and pesticides will be essential for achieving sustainability of intensive farming and requires both empirical data from field trials and advanced fundamental understanding of the molecular processes controlling plant growth. Genes involved in plant responses to nutrient deficiency and pathogen/herbivore attack have been identified, but we are lacking information about the cross-talk between signalling pathways when plants are exposed to a combination of abiotic and biotic stress factors. The focus of this review is on the relationship between the potassium status of plants and their susceptibility to pathogens and herbivorous insects. We combine field evidence on potassium–disease interaction with existing knowledge on metabolic and physiological factors that could explain such interaction, and present new data on metabolite profiles and hormonal pathways from the model plant Arabidopsis thaliana . The latter provides evidence that facilitated entry and development of pathogens or insects in(to) potassium-deficient plants as a result of physical and metabolic changes is counteracted by an increased defence. A genetic approach should now be applied to establish a causal relationship between disease susceptibility on the one hand and individual enzymatic and signal components on the other. Once identified, these can be used to design agricultural strategies that support the nutritional status of the crops while exploiting their inherent potential for defence.  相似文献   

18.
Source-sink regulation by sugar and stress.   总被引:2,自引:0,他引:2  
The regulation of carbon partitioning between source and sink tissues in higher plants is not only important for plant growth and development, but insight into the underlying regulatory mechanism is also a prerequisite to modulating assimilate partitioning in transgenic plants. Hexoses, as well as sucrose, have been recognised as important signal molecules in source-sink regulation. Components of the underlying signal transduction pathways have been identified and parallels, as well as distinct differences, to known pathways in yeast and animals have become apparent. There is accumulating evidence for crosstalk, modulation and integration between signalling pathways responding to phytohormones, phosphate, light, sugars, and biotic and abiotic stress-related stimuli. These complex interactions at the signal transduction levels and co-ordinated regulation of gene expression seem to play a central role in source-sink regulation.  相似文献   

19.
Many orthologous proteins of known mammalian receptors have been discovered in parasites. Besides disguising the parasite as self in terms of the host immune system, evidence is accumulating that these receptors link to signalling pathways in parasites that appear to be involved in their growth or development. Recently, several proteins of the host complement system, which forms part of the innate defence against invading microorganisms, have been shown to possess alternative functions. These complement proteins interact with signalling pathways involved in early development and differentiation, as well as organ and tissue regeneration. By altering cellular interactions and responses, complement is being shown to have novel roles besides the originally described inflammatory role. The possibility exists that, as for other host factors interacting with parasites and affecting their growth or development, host complement proteins could also have such an influence.  相似文献   

20.
Ubiquitin, hormones and biotic stress in plants   总被引:21,自引:0,他引:21  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号