首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined lipase deficiency (cld) is a recessive mutation in mice that causes a severe lack of lipoprotein lipase (LPL) and hepatic lipase (HL) activities, hyperlipemia, and death within 3 days after birth. Earlier studies showed that inactive LPL and HL were synthesized by cld/cld tissues and that LPL synthesized by cld/cld brown adipocytes was retained in their ER. We report here a study of HL in liver, adrenal, and plasma of normal newborn and cld/cld mice. Immunofluorescence studies showed HL was present in extracellular space, but not in cells, in liver and adrenal of both normal and cld/cld mice. When protein secretion was blocked with monensin, HL was retained intracellularly in liver cell cultures and in incubated adrenal tissues of both groups of mice. These findings demonstrated that HL was synthesized and secreted by liver and adrenal cells in normal newborn and cld/cld mice. HL activities in liver, adrenal, and plasma in cld/cld mice were very low, <8% of that in normal newborn mice, indicating that HL synthesized and secreted by cld/cld cells was inactive. Livers of both normal newborn and cld/cld mice synthesized LPL, but the level of LPL activity in cld/cld liver was very low, <9% of that in normal liver. Immunofluorescence studies showed that LPL was present intracellularly in liver of cld/cld mice, indicating that LPL was synthesized but not secreted by cld/cld liver cells. Immunofluorescent LPL was not found in normal newborn liver cells unless the cells were treated with monensin, thus demonstrating that normal liver cells synthesized and secreted LPL. Livers of both groups of mice contained an unidentified alkaline lipase activity which accounted for 34-54% of alkaline lipase activity in normal and 65% of that in cld/cld livers. Our findings indicate that liver and adrenal cells synthesized and secreted HL in both normal newborn and cld/cld mice, but the lipase was inactive in cld/cld mice. That cld/cld liver cells secreted inactive HL while retaining inactive LPL indicates that these closely related lipases were processed differently.  相似文献   

2.
Ras homologous C (RhoC) is expressed in various cancers, including hepatocellular carcinoma (HCC). In this study, we first analyzed RhoC expression in 46 HCC tissue specimens and found that RhoC expression was significantly increased in HCC tissues compared to the adjacent normal liver tissues. Next, we investigated the role of RhoC in malignant transformation of normal hepatocytes. The HL7702 cell line was stably transfected with a RhoC expression vector and then subjected to cell proliferation, differentiation, colony formation, migration and invasion assays, as well as nude mouse xenograft assays. Gene expressions in these cells were determined using RT-PCR and Western blot. Overexpression of RhoC significantly promoted proliferation and anchorage-independent growth of HL7702 cells, but suppressed cell differentiation, as compared with the parental cells and the empty vector-transfected control cells. Moreover, RhoC overexpression induced migration and invasion of HL7702 cells in vitro. Molecularly, RhoC increased the expression of cell cycle-related genes, matrix metalloprotease 2 (MMP2), MMP9 and vascular endothelial growth factor (VEGF). In addition, RhoC-transfected cells formed tumors in nude mice, whereas vector-transfected HL7702 cells did not form any tumors in nude mice. This study demonstrated the role of RhoC overexpression in malignant transformation of normal human hepatocytes, suggesting that RhoC may function as an oncogene in hepatocytes.  相似文献   

3.
Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol (HDLc) levels and presumably could affect two main HDL atheroprotective functions, macrophage-to-feces reverse cholesterol transport (RCT) and HDL antioxidant properties. In this study, we assessed the effects of both HL and EL deficiency on macrophage-specific RCT process and HDL ability to protect against LDL oxidation. HL- and EL-deficient and wild-type mice were injected intraperitoneally with [3H]cholesterol-labeled mouse macrophages, after which the appearance of [3H]cholesterol in plasma, liver, and feces was determined. The degree of HDL oxidation and the protection of oxidative modification of LDL co-incubated with HDL were evaluated by measuring conjugated diene kinetics. Plasma levels of HDLc, HDL phospholipids, apoA-I, and platelet-activated factor acetyl-hydrolase were increased in both HL- and EL-deficient mice. These genetically modified mice displayed increased levels of radiolabeled, HDL-bound [3H]cholesterol 48 h after the label injection. The magnitude of macrophage-derived [3H]cholesterol in feces was also increased in both the HL- and EL-deficient mice. HDL from the HL- and EL-deficient mice was less prone to oxidation and had a higher ability to protect LDL from oxidation, compared with the HDL derived from the wild-type mice. These changes were correlated with plasma apoA-I and apoA-I/HDL total protein levels. In conclusion, targeted inactivation of both HL and EL in mice promoted macrophage-to-feces RCT and enhanced HDL antioxidant properties.  相似文献   

4.
Hormone-sensitive lipase (HSL) regulates the hydrolysis of acylglycerol and cholesteryl ester (CE) in various organs, including adipose tissues. However, the hepatic expression level of HSL has been reported to be almost negligible. In the present study, we found that mice lacking both leptin and HSL (Lep(ob/ob)/HSL(-/-)) showed massive accumulation of CE in the liver compared with Lep(ob/ob)/HSL(+/+) mice, while triacylglycerol (TG) accumulation was modest. Similarly, feeding with a high-cholesterol diet induced hepatic CE accumulation in HSL(-/-) mice. Supporting these observations, we detected significant expression of protein as well as mRNA of HSL in the liver. HSL(-/-) mice showed reduced activity of CE hydrolase, but not of TG lipase, in the liver compared with wild-type mice. Furthermore, we confirmed the expression of HSL in viable parenchymal cells isolated from wild-type mice. The hepatocytes from HSL(-/-) mice showed reduced activity of CE hydrolase and contained more CE than those from HSL(+/+) mice even without the incubation with lipoproteins. Incubation with LDL further augmented the accumulation of CE in the HSL-deficient hepatocytes. From these results, we conclude that HSL is involved in the hydrolysis of CE in hepatocyes.  相似文献   

5.
T cell-mediated immune responses are implicated in the pathogenesis of a variety of liver disorders; however, the underlying mechanism remains obscure. Con A injection is a widely accepted mouse model to study T cell-mediated liver injury, in which STAT6 is rapidly activated. Disruption of the IL-4 and STAT6 gene by way of genetic knockout abolishes Con A-mediated liver injury without affecting IFN-gamma/STAT1, IL-6/STAT3, or TNF-alpha/NF-kappaB signaling or affecting NKT cell activation. Infiltration of neutrophils and eosinophils in Con A-induced hepatitis is markedly suppressed in IL-4 (-/-) and STAT6(-/-) mice compared with wild-type mice. IL-4 treatment induces expression of eotaxins in hepatocytes and sinusoidal endothelial cells isolated from wild-type mice but not from STAT6(-/-) mice. Con A injection induces expression of eotaxins in the liver and elevates serum levels of IL-5 and eotaxins; such induction is markedly attenuated in IL-4(-/-) and STAT6(-/-) mice. Finally, eotaxin blockade attenuates Con A-induced liver injury and leukocyte infiltration. Taken together, these findings suggest that IL-4/STAT6 plays a critical role in Con A-induced hepatitis, via enhancing expression of eotaxins in hepatocytes and sinusoidal endothelial cells, and induces IL-5 expression, thereby facilitating recruitment of eosinophils and neutrophils into the liver and resulting in hepatitis.  相似文献   

6.
Hepatic stellate cells (HSCs) play an important role in several (patho)physiologic conditions in the liver. In response to chronic injury, HSCs are activated and change from quiescent to myofibroblast-like cells with contractile properties. This shift in phenotype is accompanied by a change in expression of intermediate filament (IF) proteins. HSCs express a broad, but variable spectrum of IF proteins. In muscle, syncoilin was identified as an alpha-dystrobrevin binding protein with sequence homology to IF proteins. We investigated the expression of syncoilin in mouse and human HSCs. Syncoilin expression in isolated and cultured HSCs was studied by qPCR, Western blotting, and fluorescence immunocytochemistry. Syncoilin expression was also evaluated in other primary liver cell types and in in vivo-activated HSCs as well as total liver samples from fibrotic mice and cirrhotic patients. Syncoilin mRNA was present in human and mouse HSCs and was highly expressed in in vitro- and in vivo-activated HSCs. Syncoilin protein was strongly upregulated during in vitro activation of HSCs and undetectable in hepatocytes and liver sinusoidal endothelial cells. Syncoilin mRNA levels were elevated in both CCl4- and common bile duct ligation-treated mice. Syncoilin immunocytochemistry revealed filamentous staining in activated mouse HSCs that partially colocalized with α-smooth muscle actin, β-actin, desmin, and α-tubulin. We show that in the liver, syncoilin is predominantly expressed by activated HSCs and displays very low-expression levels in other liver cell types, making it a good marker of activated HSCs. During in vitro activation of mouse HSCs, syncoilin is able to form filamentous structures or at least to closely interact with existing cellular filaments.  相似文献   

7.
We previously identified that four of five putative N-linked glycosylation sites of human endothelial lipase (EL) are utilized and suggested that the substitution of asparagine-116 (Asn-116) with alanine (Ala) (N116A) increased the hydrolytic activity of EL. The current study demonstrates that mutagenesis of either Asn-116 to threonine (Thr) or Thr-118 to Ala also disrupted the glycosylation of EL and enhanced catalytic activity toward synthetic substrates by 3-fold versus wild-type EL. Furthermore, we assessed the hydrolysis of native lipoprotein lipids by EL-N116A. EL-N116A exhibited a 5-fold increase in LDL hydrolysis and a 1.8-fold increase in HDL2 hydrolysis. Consistent with these observations, adenovirus-mediated expression of EL-N116A in mice significantly reduced the levels of both LDL and HDL cholesterol beyond the reductions observed by the expression of wild-type EL alone. Finally, we introduced Asn-116 of EL into the analogous positions within LPL and HL, resulting in N-linked glycosylation at this site. Glycosylation at this site suppressed the LPL hydrolysis of synthetic substrates, LDL, HDL2, and HDL3 but had little effect on HL activity. These data suggest that N-linked glycosylation at Asn-116 reduces the ability of EL to hydrolyze lipids in LDL and HDL2.  相似文献   

8.
9.
The cellular organization of normal mouse liver was studied using light and electron microscopy and quantitative immunocytochemical techniques. The general histological organization of the mouse liver is similar to livers of other mammalian species, with a lobular organization based on the distributions of portal areas and central venules. The parenchymal hepatocytes were detected with immunocytochemical techniques to recognize albumin or biotin containing cells. The macrophage Kupffer cells were identified with F4-80 immunocytochemistry, Ito stellate cells were identified with GFAP immunocytochemistry, and endothelial cells were labeled with the CD-34 antibody. Kupffer cells were labeled with intravascularly administered fluorescently labeled latex microspheres of both large (0.5 μm) and small (0.03 μm) diameters, while endothelial cells were labeled only with small diameter microspheres. Neither hepatocytes nor Ito stellate cells were labeled by intravascularly administered latex microspheres. The principal fine structural features of hepatocytes and non-parenchymal cells of mouse liver are similar to those reported for rat. Counts of immunocytochemically labeled cells with stained nuclei indicated that hepatocytes constituted approximately 52% of all labeled cells, Kupffer cells about 18%, Ito cells about 8%, and endothelial cells about 22% of all labeled cells. Approximately, 35% of the hepatocytes contained two nuclei; none of the Kupffer or Ito cells were double nucleated. The presence of canaliculi and a bile duct system appear similar to that reported for other species. The cellular organization of the mouse liver is quite similar to that of other mammalian species, confirming that the mouse presents a useful animal model for studies of liver structure and function.  相似文献   

10.
Hematopoietic cells have been reported to convert into a number of non-hematopoietic cells types after transplantation/injury. Here, we have used a lineage tracing approach to determine whether hematopoietic plasticity is relevant for the normal development of hepatocytes and endothelial cells, both of which develop in close association with blood cells. Two mouse models were analyzed: vav ancestry mice, in which essentially all hematopoietic cells, including stem cells, irreversibly express yellow fluorescent protein (YFP); and lysozyme ancestry mice, in which all macrophages, as well as a small subset of all other non-myeloid hematopoietic cells, are labeled. Both lines were found to contain YFP+ hepatocytes at similar frequencies, indicating that macrophage to hepatocyte contributions occur in unperturbed mice. However, the YFP+ hepatocytes never formed clusters larger than three cells, suggesting a postnatal origin. In addition, the frequency of these cells was very low (approximately 1 in 75,000) and only increased two- to threefold after acute liver injury. Analysis of the two mouse models revealed no evidence for a hematopoietic origin of endothelial cells, showing that definitive HSCs do not function as hemangioblasts during normal development. Using endothelial cells and hepatocytes as paradigms, our study indicates that hematopoietic cells are tightly restricted in their differentiation potential during mouse embryo development and that hematopoietic plasticity plays at best a minor role in adult organ maintenance and regeneration.  相似文献   

11.
Endothelial lipase (EL), a member of the triglyceride lipase gene family, has been shown to be a key player in HDL metabolism. Northern blots revealed that EL was highly expressed in endothelium, thyroid, lung, placenta, liver, and testis. In liver and adrenal gland, EL protein was localized with vascular endothelial cells but not parenchymal cells. EL was shown to be upregulated in tissues such as atherosclerotic plaque where it was located in macrophages, endothelial cells, and medial smooth muscle cells. The purpose of this study was to investigate the cellular localization of EL in thyroid and other tissues where EL is known to be expressed. Besides its presence in vascular endothelial and smooth muscle cells, EL protein was detected in the epithelial cells that line the follicles within the thyroid gland. EL-specific immunostaining was also found near the cell surface as well as in the cytoplasm of adipocytes. Using immunoblots, EL expression was confirmed in cultured human omental and subcutaneous adipocytes. EL expression, however, was not found in preadipocytes. These findings suggest that EL plays a role in thyroid and adipocyte biology in addition to its well-known role in endothelial function and HDL metabolism.  相似文献   

12.
 Glutamine synthetase and carbamoylphosphate synthetase I expression was examined immunohistochemically in livers of spf–ash homozygous and hemizygous mice, in which one of the urea cycle enzymes (ornithine carbamoyltransferase) is deficient and hyperammonemic disorders are obvious. In the mutant adult mouse liver, only hepatocytes lining central veins expressed glutamine synthetase. In contrast, other hepatocytes expressed carbamoylphosphate synthetase I but not glutamine synthetase. This complementary expression pattern is similar to that seen in wild-type mouse liver. In the liver of mutant young mice, which showed severe retarded growth and abnormal hair and skin development, the developmental expression pattern of both enzymes was also similar to that of the corresponding wild-type liver. However, suppression of carbamoylphosphate synthetase I expression in the pericentral hepatocytes occurred later in the mutant than in wild-type liver. These results show that high plasma concentrations of ammonium ions, which are one of the substrates for both the enzymes, do not change their complementary expression. Instead they support the idea that factor(s) associated with central veins rather than humoral factors direct pericentral hepatocytes to express glutamine synthetase and to suppress carbamoylphosphate synthetase I expression. Accepted: 24 April 1997  相似文献   

13.
Combined lipase deficiency (cld) is a recessively inherited disorder in mice associated with a deficiency of LPL and hepatic lipase (HL) activity. LPL is synthesized in cld tissues but is retained in the endoplasmic reticulum (ER), whereas mouse HL (mHL) is secreted but inactive. In this study we investigated the effect of cld on the secretion of human HL (hHL) protein mass and activity. Differentiated liver cell lines were derived from cld mice and their normal heterozygous (het) littermates by transformation of hepatocytes with SV40 large T antigen. After transient transfection with lipase expression constructs, secretion of hLPL activity from cld cells was only 12% of that from het cells. In contrast, the rate of secretion of hHL activity and protein mass per unit of expressed hHL mRNA was identical for the two cell lines. An intermediate effect was observed for mHL, with a 46% reduction in secretion of activity from cld cells. The ER glucosidase inhibitor, castanospermine, decreased secretion of both hLPL and hHL from het cells by approximately 70%, but by only approximately 45% from cld cells. This is consistent with data suggesting that cld may result from a reduced concentration of the ER chaperone calnexin. In conclusion, our results demonstrate a differential effect of cld on hLPL, mHL, and hHL secretion, suggesting differential requirements for activation and exit of the enzymes from the ER.  相似文献   

14.
Endothelial lipase: a new lipase on the block   总被引:8,自引:0,他引:8  
Endothelial lipase (EL) is a newly described member of the triglyceride lipase gene family. It has a considerable molecular homology with lipoprotein lipase (LPL) (44%) and hepatic lipase (HL) (41%). Unlike LPL and HL, this enzyme is synthesized by endothelial cells and functions at the site where it is synthesized. Furthermore, its tissue distribution is different from that of LPL and HL. As a lipase, EL has primarily phospholipase A1 activity. Animals that overexpress EL showed reduced HDL cholesterol levels. Conversely, animals that are deficient in EL showed a marked elevation in HDL cholesterol levels, suggesting that it plays a physiologic role in HDL metabolism. Unlike LPL and HL, EL is located in the vascular endothelial cells and its expression is highly regulated by cytokines and physical forces, suggesting that it may play a role in the development of atherosclerosis. However, there is only a limited amount of information available about this enzyme. Some of our unpublished data in addition to previously published data support the possibility that the enzyme plays a role in the formation of atherosclerotic lesion.  相似文献   

15.
Experimental hyperlipidemia has shown to decrease cytochrome P450 3A4 and 2C11 expression and to increase liver concentrations and the plasma protein binding of halofantrine (HF) enantiomers. The present study examined the effect of hyperlipidemic (HL) serum on the metabolism of HF enantiomers by primary rat hepatocytes. Hepatocytes from normolipidemic (NL) and HL (poloxamer 407 treated) rats were incubated with rac-HF in cell media with or without additional rat serum (5%). In those incubations with rat serum, the hepatocytes were preincubated or coincubated with serum from NL or HL rats. Rat serum-free hepatocyte incubations served as controls. Stereospecific assays were used to measure HF and desbutylhalofantrine (its major metabolite) enantiomer concentrations in whole well contents (cells + media). Concentrations of desbutylhalofantrine were not measurable. The disappearance (apparent metabolism) of (-)-HF exceeded that of antipode, but HF metabolism did not differ between hepatocytes from NL and HL rats. Coincubation of HL rat serum with NL hepatocytes caused a significant decrease in the disappearance of (-)-HF, whereas in HL hepatocytes, a substantially decreased apparent metabolism was noted for both enantiomers. Compared with NL serum, (-)-HF disappearance was significantly lowered upon preincubation of NL hepatocytes with HL serum. A combination of factors including diminished drug metabolizing or lipoprotein receptor expression, and increased plasma protein binding in the wells, may have contributed to a decrease in apparent metabolism of the HF enantiomers in the presence of lipoproteins from HL rat serum.  相似文献   

16.
Effect of N-linked glycosylation on hepatic lipase activity   总被引:2,自引:0,他引:2  
Hepatic lipase (HL) is a secretory protein synthesized in hepatocytes and bound to liver endothelium. Previous studies have suggested that HL N-linked glycans are required for catalytic activity. To directly test this hypothesis, Xenopus laevis oocytes were used to express native rat HL or HL lacking one or both N-linked glycosylation sites. The expressed and secreted native HL had an apparent molecular mass of 53 kDa, consistent with purified rat liver HL. The mutant lacking both glycosylation sites, while poorly secreted, had an apparent molecular mass of 48 kDa, the same size observed for HL after enzymatic removal of N-linked oligosaccharides. Mutants lacking one of the two sites were intermediate in size and showed reduced secretion. Each of these expressed and secreted proteins had full catalytic activity that was inhibited by antisera to rat HL. Thus, N-linked glycosylation of rat HL, while important to lipase secretion, is not essential for the expression of lipase activity.  相似文献   

17.
Hepatic lipase (HL) is synthesized by the liver and is also present in steroidogenic tissues. As both a lipolytic enzyme and a ligand that facilitates the cellular uptake of lipoproteins, HL plays a major role in lipoprotein metabolism and may modulate atherogenic risk. However, HL has not been directly implicated in lesion development. In the present study we demonstrate that HL is also synthesized by mouse and human macrophages. Northern analysis and real time RT-PCR showed that HL mRNA is present in mouse peritoneal macrophages, RAW-264.7, and IC-21 cells. The levels of HL mRNA in mouse peritoneal macrophages were approximately 10-30% that of mouse liver. HL protein was identified by Western blot analyses in human monocyte-derived macrophages, THP, RAW-264.7, and mouse peritoneal macrophages following fractionation by heparin-sepharose affinity chromatography. These combined findings establish that HL is synthesized de novo by macrophages as well as liver, and raises the possibility that HL may have a direct role in the pathogenesis of atherosclerosis.  相似文献   

18.
Signaling through the Wnt/β-catenin pathway is a crucial determinant of hepatic zonal gene expression, liver development, regeneration, and tumorigenesis. Transgenic mice with hepatocyte-specific knockout of Ctnnb1 (encoding β-catenin) have proven their usefulness in elucidating these processes. We now found that a small number of hepatocytes escape the Cre-mediated gene knockout in that mouse model. The remaining β-catenin-positive hepatocytes showed approximately 25% higher cell volumes compared to the β-catenin-negative cells and exhibited a marker protein expression profile similar to that of normal perivenous hepatocytes or hepatoma cells with mutationally activated β-catenin. Surprisingly, the expression pattern was observed independent of the cell's position within the liver lobule, suggesting a malfunction of physiological periportal repression of perivenously expressed genes in β-catenin-deficient liver. Clusters of β-catenin-expressing hepatocytes lacked expression of the gap junction proteins Connexin 26 and 32. Nonetheless, β-catenin-positive hepatocytes had no striking proliferative advantage, but started to grow out on treatment with phenobarbital, a tumor-promoting agent known to facilitate the formation of mouse liver adenoma with activating mutations of Ctnnb1. Progressive re-population of Ctnnb1 knockout livers with wild-type hepatocytes was seen in aged mice with a pre-cirrhotic phenotype. In these large clusters of β-catenin-expressing hepatocytes, perivenous-specific gene expression was re-established. In summary, our data demonstrate that the zone-specificity of a hepatocyte's gene expression profile is dependent on the presence of β-catenin, and that β-catenin provides a proliferative advantage to hepatocytes when promoted with phenobarbital, or in a pre-cirrhotic environment.  相似文献   

19.
Hepatic lipase: structure/function relationship,synthesis, and regulation   总被引:24,自引:0,他引:24  
Hepatic lipase (HL) is a lipolytic enzyme, synthesized by hepatocytes and found localized at the surface of liver sinusoid capillaries. In humans, the enzyme is mostly bound onto heparan-sulfate proteoglycans at the surface of hepatocytes and also of sinusoid endothelial cells. HL shares a number of functional domains with lipoprotein lipase and with other members of the lipase gene family. It is a secreted glycoprotein, and remodelling of the N-linked oligosaccharides appears to be crucial for the secretion process, rather than for the acquisition of the catalytic activity. HL is also present in adrenals and ovaries, where it might promote delivery of lipoprotein cholesterol for steroidogenesis. However, evidence of a local synthesis is still controversial. HL activity is fairly regulated according to the cell cholesterol content and to the hormonal status. Coordinate regulations have been reported for both HL and the scavenger-receptor B-I, suggesting complementary roles in cholesterol metabolism. However, genetic variants largely contribute to HL variability and their possible impact in the development of a dyslipidemic phenotype, or in a context of insulin-resistance, is discussed.  相似文献   

20.
Two antigens - A6 and G7 - shared by mouse biliary epithelial and oval cells were revealed by monoclonal antibodies raised in rat immunized with oval-cell-enriched liver fraction. Oval cells were induced in CBA or F1 (CBA x C57BL6) mice by a combination of a single injection of the alkylating drug Dipin with partial hepatectomy. In normal liver A6 antigen was localized, using light and electron microscopy, in biliary epithelial cells of all ducts including Hering canals. Some bile ductal and Hering cells were A6-negative. Occasionally, A6 antigen was present in single hepatocytes forming the periportal ends of hepatic cords. In preneoplastic and tumorous liver A6 antigen was present in bile ductal and oval cells and in a fraction of newly formed hepatocytes and tumor cells. G7 antigen was revealed in normal, precancerous and tumorous liver in biliary epithelial and oval cells but not in hepatocytes. A6 and G7 antigens were not liver-specific: they were expressed in various normal organs and tissues, especially in epithelia. In studies of mouse liver lineages A6 antigen can be used as a common marker of biliary epithelial and oval cells and hepatocytes at certain stages of differentiation. G7 antigen is a marker of oval and biliary epithelial cells. There was a striking similarity in A6 antigen localization to that of human blood group antigens in normal liver and liver tumors. A6 antigen may thus provide a useful tool for the study of neoexpression of human blood group antigens in liver tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号