首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NIN1 is an essential gene for growth of the yeastSaccharomyces cerevisiae and was recently found to encode a component of the regulatory subunit of the 26S proteasome. Thenin1-1 mutant is temperature sensitive and its main defect is in G1/S progression and G2/M progression at non-permissive temperatures. One of the two multicopy suppressors ofnin1-1, SUN2 (SUppressor of Nin1-1), was found to encode a protein of 523 amino acids whose sequence is similar to those ofDrosophila melanogaster diphenol oxidase A2 and the mouse mast-cell Tum transplantation antigen, P91A. The C-terminal half of Sun2p was found to be functional as Sun2p at 25° C, 30° C, and 34° C but not at 37° C. The open reading frame (ORF) of theDrosophila diphenol oxidase A2 gene (Dox-A2) was obtained from a lambda phage cDNA library using the polymerase chain reaction technique. TheDox-A2 ORF driven by theTDH3 promoter complemented the phenotype of a strain deleted forsun2. ThisDox-A2-dependent strain was temperature sensitive and accumulated dumb-bell-shaped cells, with an undivided nucleus at the isthmus, after temperature upshift. This morphology is similar to that ofnin1-1 cells kept at a restrictive temperature. These results suggest thatSUN2 is a functional counterpart ofDox-A2 and that these genes play a pivotal role in the cell cycle in each organism.  相似文献   

2.
The nin1-1 mutant of Saccharomyces cerevisiae cannot perform the G1/S and G2/M transitions at restrictive temperatures. At such temperatures, nin1-1 strains fail to activate histone H1 kinase after release from alpha factor-imposed G1 block and after release from hydroxyurea-imposed S block. The nin1-1 mutation shows synthetic lethality with certain cdc28 mutant alleles such as cdc28-IN. Two lines of evidence indicate that Nin1p is a component of the 26S proteasome complex: (i) Nin1p, as well as the known component of the 26S proteasome, shifted to the 26S proteasome peak in the glycerol density gradient after preincubation of crude extract with ATP-Mg2+, and (ii) nin1-1 cells accumulated polyubiquitinated proteins under restrictive conditions. These results suggest that activation of Cdc28p kinase requires proteolysis. We have cloned a human cDNA encoding a regulatory subunit of the 26S proteasome, p31, which was found to be a homolog of Nin1p.  相似文献   

3.
Summary The bacterial lacZ gene was introduced into two sibling strains of Saccharomyces cerevisiae, one a wild-type strain with normal proteinase activity and the other a pep4-3 mutant strain. The pep4-3 mutation resulted in 90% reduced activity of the four major vacuolar proteinases. By comparing the activity of the lacZ gene product (-galactosidase) in both strains the degradative effect of the major vacuolar proteinases on a heterologous protein was estimated. The mutant strain with reduced proteinase activity had higher -galactosidase activity under all the test conditions. In the most productive case the pep4-3 mutant had 55% higher -galactosidase activity than the wild-type. Batch cultures of the two strains were evaluated for growth characteristics. The strain with reduced proteinase activity grew to higher optical densities than the wild-type. Upon further examination it was found that not only were the optical densities of pep4-3 cultures greater but the cell numbers were much greater than expected due to the smaller size of pep4-3 cells. It is concluded that the strain lacking vacuolar proteinases maintained increased levels of -galactosidase and is physiologically as healthy as the wild-type.Offprint requests to: J. M. Wingfield  相似文献   

4.
A β-phosphoglucomutase (β-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of β-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h−1, while the deletion of β-PGM resulted in a maximum specific growth rate of 0.05 h−1 on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as β-glucose 1-phosphate in the medium. Furthermore, the β-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of α-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the β-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded β-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

5.
The rpoS gene from Pseudomonas sp. M18, which encodes predicted protein (an alternative sigma factor s, σS, or σ38) with 99.5% sequence identity with RpoS from Pseudomonas aeruginosa PAO1, was first cloned. In order to investigate the mechanism of rpoS expression, an rpoS null mutant, named M18S, was constructed with insertion of aacC1 cassette bearing a gentamycin resistance gene. With introduction of a plasmid containing an rpoS′–′lacZ translational fusion (pMERS) to wild-type strain M18 or M18S, it was first found that β-galactosidase activity expressed in strain M18S (pMERS) decreased to fourfold of that expressed in the strain M18 (pMERS). When strain M18S (pMERS) was introduced with another plasmid pBBS containing the wild-type rpoS gene, its β-galactosidase expression level was enhanced and almost restored to that in strain M18 (pMERS). Similarly, expression of β-galactosidase from a chromosomal fusion of the promoter of the wild-type rpoS gene with lacZ (rpoSlacZ) was enhanced fivefold in the presence of a plasmid with the wild-type rpoS gene. With these findings, it is suggested that RpoS sigma factor may be involved in autoinducing its own gene expression in Pseudomonas sp. M18.  相似文献   

6.
Summary AS9-1 was isolated as a mutation restoring growth in a strain carrying the ribosomal mutation su12-1. The AS9-1 mutation confers a weak antisuppressor effect and a low level of resistance to paromomycin. Two-dimensional polyacrylamide gel electrophoresis patterns of the ribosomal proteins from AS9-1 strains show an altered S9 protein which is more basic than the wild-type form. The presence of the two forms of the protein (wild-type and mutant) in heterocaryotic strains strongly suggests that AS9 is the structural gene for the ribosomal protein S9.  相似文献   

7.
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.  相似文献   

8.
Summary A strain of Escherichia coli exhibiting reduced activity of the periplasmic enzyme acid phosphoanhydride phosphohydrolase (pH 2.5 acid phosphatase) was isolated. The mutation designated appA1 was located at 22.5 min on the E. coli genetic map. Acid phosphatase purified from an appA transductant showed less than ten percent of the specific activity of an isogenic appA +strain. The mutant enzyme was highly thermolabile and its Km for paranitrophenyl phosphate was increased about 20-fold. The mutant protein cross-reacted with antibody to the wild-type enzyme and had the same molecular weight and concentration in extracts as the wild-type enzyme. These findings strongly suggest that appA is the structural gene of the acid phosphatase.Abbreviations PNPP paranitrophenyl phosphate - cAMP 3-5-cyclic adenosine monophosphate - Nitrosoguanidine N-methyl-N'-nitro-N-nitrosoguanidine - TCY tetracycline - KAN kanamycin - STR streptomycin  相似文献   

9.
High-Level Production of Recombinant Human Parathyroid Hormone 1-34   总被引:4,自引:1,他引:3       下载免费PDF全文
Expression of the synthetic human parathyroid hormone 1-34 [hPTH(1-34)] gene by a gene fusion strategy was demonstrated. hPTH(1-34) was produced at the C terminus of the partner peptides involving amino acids 1 to 97, 1 to 117, or 1 to 139 of a modified Escherichia coli β-galactosidase by linker peptides containing oligohistidine of different lengths. The fusion proteins in the inclusion bodies were rendered soluble with urea and subjected to site-specific cleavage with the secretory type yeast Kex2 protease. Optimal expression and enzymatic processing were achieved in the fusion protein βG-117S4HPT, constructed from amino acids 1 to 117 of β-galactosidase and the linker of HHHHPGGSVKKR. The fusion protein accumulated more than 20% of the E. coli total protein. The hPTH(1-34) was purified up to 99.5% with a good yield of 0.5 g/liter of culture. The purified product was identified as intact hPTH(1-34) by amino acid analysis and N-terminal sequencing.  相似文献   

10.
The biochemical lesion in a light-sensitive, acetate-requiring Chlamydomonas mutant was identified. This strain, designated rpk, exhibited photosynthetic rates less than 3% of the wild-type. Analysis of photosynthetic products by high-performance liquid chromatography demonstrated an accumulation of 14C label in pentose and hexose monophosphates. After 1 min of photosynthesis in 14CO2 these intermediates comprised 27.5% of the label in the mutant compared with 8% in the wild-type. The mutant pheno-type was caused by a 20-fold reduction in ribulose-5-phosphate (Ru5P)-kinase (EC 2.7.1.19) activity. The mutant exhibited wild-type levels of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) and transketolase (EC 2.2.1.1) indicating that the mutation specifically affected Ru5P kinase. In a cross of the mutant with the wild-type, tetrad progeny segregated in a Mendelian fashion (1:1) and light-sensitivity cosegregated with reduced Ru5P-kinase activity and an acetate requirement for growth. Almost normal levels of Ru5P-kinase protein were detected in the mutant by probing nitrocellulose replicas of sodium dodecylsulfate-polyacrylamide gels with anti-Ru5P-kinase antibody. The subunit size of the mutant enzyme, 42 kDa, was identical to that of the wild-type. Isoelectric focusing of the native protein determined that the mutant protein was altered, exhibiting a more acidic isoelectric point than the wild-type protein. Thus, the molecular basis for the lesion affecting Ru5P-kinase activity in mutant rpk is a charge alteration which results in a partially impaired enzyme.Abbreviations Chl chlorophyll - Da dalton - FCCP carbonylcyanide-p-trifluorophenylhydrazone - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate  相似文献   

11.
Nin1p, a component of the 26S proteasome of Saccharomyces cerevisiae, is required for activation of Cdc28p kinase at the G1-S-phase and G2-M boundaries. By exploiting the temperature-sensitive phenotype of the nin1-1 mutant, we have screened for genes encoding proteins with related functions to Nin1p and have cloned and characterized two new multicopy suppressors, SUN1 and SUN2, of the nin1-1 mutation. SUN1 can suppress a null nin1 mutation, whereas SUN2, an essential gene, does not. Sun1p is a 268-amino acid protein which shows strong similarity to MBP1 of Arabidopsis thaliana, a homologue of the S5a subunit of the human 26S proteasome. Sun1p binds ubiquitin-lysozyme conjugates as do S5a and MBP1. Sun2p (523 amino acids) was found to be homologous to the p58 subunit of the human 26S proteasome. cDNA encoding the p58 component was cloned. Furthermore, expression of a derivative of p58 from which the N-terminal 150 amino acids had been removed restored the function of a null allele of SUN2. During glycerol density gradient centrifugation, both Sun1p and Sun2p comigrated with the known proteasome components. These results, as well as other structural and functional studies, indicate that both Sun1p and Sun2p are components of the regulatory module of the yeast 26S proteasome.  相似文献   

12.
In cells infected with the herpes simplex virus 1 (HSV-1) recombinant R3616 lacking both copies of the γ134.5 gene, the double-stranded protein kinase R (PKR) is activated, eIF-2α is phosphorylated, and protein synthesis is shut off. Although PKR is also activated in cells infected with the wild-type virus, the product of the γ134.5 gene, infected-cell protein 34.5 (ICP34.5), binds protein phosphatase 1α and redirects it to dephosphorylate eIF-2α, thus enabling sustained protein synthesis. Serial passage in human cells of a mutant lacking the γ134.5 gene yields second-site, compensatory mutants lacking various domains of the α47 gene situated next to the US11 gene (I. Mohr and Y. Gluzman, EMBO J. 15:4759–4766, 1996). We report the construction of two recombinant viruses: R5103, lacking the γ134.5, US8, -9, -10, and -11, and α47 (US12) genes; and R5104, derived from R5103 and carrying a chimeric DNA fragment containing the US10 gene and the promoter of the α47 gene fused to the coding domain of the US11 gene. R5104 exhibited a protein synthesis profile similar to that of wild-type virus, whereas protein synthesis was shut off in cells infected with R5103 virus. Studies on the wild-type parent and mutant viruses showed the following: (i) PKR was activated in cells infected with parent or mutant virus but not in mock-infected cells, consistent with earlier studies; (ii) lysates of R3616, R5103, and R5104 virus-infected cells lacked the phosphatase activity specific for eIF-2α characteristic of wild-type virus-infected cells; and (iii) lysates of R3616 and R5103, which lacked the second-site compensatory mutation, contained an activity which phosphorylated eIF-2α in vitro, whereas lysates of mock-infected cells or cells infected with HSV-1(F) or R5104 did not phosphorylate eIF-2α. We conclude that in contrast to wild-type virus-infected cells, which preclude the shutoff of protein synthesis by causing rapid dephosphorylation of eIF-2α, in cells infected with γ134.5 virus carrying the compensatory mutation, eIF-2α is not phosphorylated. The activity made apparent by the second-site mutation may represent a more ancient mechanism evolved to preclude the shutoff of protein synthesis.  相似文献   

13.
NIN1 is an essential gene for growth of the yeastSaccharomyces cerevisiae and was recently found to encode a component of the regulatory subunit of the 26S proteasome. Thenin1-1 mutant is temperature sensitive and its main defect is in G1/S progression and G2/M progression at non-permissive temperatures. One of the two multicopy suppressors ofnin1-1, SUN2 (SUppressor of Nin1-1), was found to encode a protein of 523 amino acids whose sequence is similar to those ofDrosophila melanogaster diphenol oxidase A2 and the mouse mast-cell Tum? transplantation antigen, P91A. The C-terminal half of Sun2p was found to be functional as Sun2p at 25° C, 30° C, and 34° C but not at 37° C. The open reading frame (ORF) of theDrosophila diphenol oxidase A2 gene (Dox-A2) was obtained from a lambda phage cDNA library using the polymerase chain reaction technique. TheDox-A2 ORF driven by theTDH3 promoter complemented the phenotype of a strain deleted forsun2. ThisDox-A2-dependent strain was temperature sensitive and accumulated dumb-bell-shaped cells, with an undivided nucleus at the isthmus, after temperature upshift. This morphology is similar to that ofnin1-1 cells kept at a restrictive temperature. These results suggest thatSUN2 is a functional counterpart ofDox-A2 and that these genes play a pivotal role in the cell cycle in each organism.  相似文献   

14.
Tylosin is a macrolide antibiotic used as veterinary drug and growth promoter. Attempts were made for hyper production of tylosin by a strain of Streptomyces fradiae NRRL-2702 through irradiation mutagenesis. Ultraviolet (UV) irradiation of wild-type strain caused development of six morphologically altered colony types on agar plates. After screening using Bacillus subtilis bioassay only morphological mutants indicated the production of tylosin. An increase of 2.7±0.22-fold in tylosin production (1500 mg/l) in case of mutant UV-2 in complex medium was achieved as compared to wild-type strain (550 mg/l). Gamma irradiation of mutant UV-2 using 60Co gave one morphologically altered colony type γ-1, which gave 2500 mg/l tylosin yield in complex medium. Chemically defined media promoted tylosin production upto 3800 mg/l. Maximum value of qp (3.34 mg/gh) was observed by mutant γ-1 as compared to wild strain (0.81 mg/gh). Moreover, UV irradiation associated changes were unstable with loss of tylosin activity whereas mutant γ-1 displayed high stability on subsequent culturing.  相似文献   

15.
Inactivation of the gene encoding the periplasmic protease DegP confers a high-temperature-sensitive phenotype in Escherichia coli. We have previously demonstrated that a degP mutant of E. coli strain CBM (W3110 pldA1) is not temperature sensitive and showed that this was most likely due to constitutive activation of the sigma E and Cpx extracytoplasmic stress regulons in the parent strain. In this study, further characterization of this strain revealed a previously unknown cryptic mutation that rescued the degP temperature-sensitive phenotype by inducing the extracytoplasmic stress regulons. We identified the cryptic mutation as an 11-bp deletion of nucleotides 1884 to 1894 of the adenylate cyclase-encoding cyaA gene (cyaAΔ11). The mechanism in which cyaAΔ11 induces the sigma E and Cpx regulons involves decreased activity of the mutant adenylate cyclase. Addition of exogenous cyclic AMP (cAMP) to the growth medium of a cyaAΔ11 mutant strain that contains a Cpx- and sigma E-inducible degP-lacZ reporter fusion decreased β-galactosidase expression to levels observed in a cyaA+ strain. We also found that a cyaA null mutant displayed even higher levels of extracytoplasmic stress regulon activation compared to a cyaAΔ11 mutant. Thus, we conclude that the lowered concentration of cAMP in cyaA mutants induces both sigma E and Cpx extracytoplasmic stress regulons and thereby rescues the degP temperature-sensitive phenotype.  相似文献   

16.
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative α-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro α-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with α-1,2- and α-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first α-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.  相似文献   

17.
An infectious herpesvirus mutant has been constructed in which a major structural envelope glycoprotein gene was replaced by a hybrid gene encoding a novel fusion protein consisting of the N-terminus of the viral glycoprotein joined to Escherichia coli β-galactosidase (ßGal). Specifically, we fused DNA encoding the first 157 amino acids of the structural glycoprotein gIII from pseudorabies virus strain Becker to the E. coli lacZ gene in a bacterial expression vector. The resulting hybrid gene was then used to replace the wild-type gIII gene in the virus by cotransfection of plasmid and viral DNA. The desired viral recombinants were identified by their inability to react with specific monoclonal antibodies that recognized only wild-type gIII protein. One such mutant virus, PRV-Z1, was chosen for further analysis. PRV-Z1 expressed a glycosylated gIII-ßGal fusion protein after infection of PK15 cells. The fusion protein has no demonstrable ßGal activity and, although glycosylated, remains sensitive to the enzyme endo-β-N-acetylglucosaminidase H, unlike the mature gIII gene product, indicating that the fusion protein was incompletely processed.  相似文献   

18.
Molasses is widely used as a substrate for commercial yeast production. The complete hydrolysis of raffinose, which is present in beet molasses, by Saccharomyces strains requires the secretion of α-galactosidase, in addition to the secretion of invertase. Raffinose is not completely utilized by commercially available yeast strains used for baking, which are Mel. In this study we integrated the yeast MEL1 gene, which codes for α-galactosidase, into a commercial mel0 baker's yeast strain. The Mel+ phenotype of the new strain was stable. The MEL1 gene was expressed when the new Mel+ baker's yeast was grown in molasses medium under conditions similar to those used for baker's yeast production at commercial factories. The α-galactosidase produced by this novel baker's yeast strain hydrolyzed all the melibiose that normally accumulates in the growth medium. As a consequence, additional carbohydrate was available to the yeasts for growth. The new strain also produced considerably more α-galactosidase than did a wild-type Mel+ strain and may prove useful for commercial production of α-galactosidase.  相似文献   

19.
A Bacillus thuringiensis respiratory mutant (AB1 strain) that shows premature sporulation and insecticidal crystal protein (ICP) production was isolated. The mutant strain harbours the cryIC and cryID insecticidal genes and could be important for the production of ICP highly toxic to Spodoptera sp. The mutant was selected by its increased capacity to oxidize. N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). In this strain, cytochrome aa 3 expression is not repressed during the sporulation phase, in contrast with the wild-type strain. The growth, spore production, dissolved O2, O2 consumption, CO2 evolution rate and ICP production were recorded as a function of time. The AB1 mutant strain has a similar growth yield to the wild-type strain, but begins sporulation at least 4 h earlier. The AB1 strain consumes 74.5% more O2 than the wild-type strain, during the fermentation process. The mutation on strain AB1 has an important positive effect on ICP production. This procedure shows that ICP production could be increased during fermentation by increasing the respiration capacity of Bacillus thuringiensis. Correspondence to: A. Bravo  相似文献   

20.
Summary Yeast strain 990 carries a mutation mapping to the oli1 locus of the mitochondrial genome, the gene encoding ATPase subunit 9. DNA sequence analysis indicated a substitution of valine for alanine at residue 22 of the protein. The strain failed to grow on nonfermentable carbon sources such as glycerol at low temperature (20°C). At 28°C the strain grew on nonfermentable carbon sources and was resistant to the antibiotic oligomycin. ATPase activity in mitochondria isolated from 990 was reduced relative to the wild-type strain from which it was derived, but the residual activity was oligomycin resistant. Subunit 9 (the DCCD-binding proteolipid) from the mutant strain exhibited reduced mobility in SDS-polyacrylamide gels relative to the wild-type proteolipid. Ten revertant strains of 990 were analyzed. All restored the ability to grow on glycerol at 20°C. Mitotic segregation data showed that eight of the ten revertants were attributable to mitochondrial genetic events and two were caused by nuclear events since they appeared to be recessive nuclear suppressors. These nuclear mutations retained partial resistance to oligomycin and did not alter the electrophoretic behavior of subunit 9 or any other ATPase subunit. When mitochondrial DNA from each of the revertant strains was hybridized with an oligonucleotide probe covering the oli1 mutation, seven of the mitochondrial revertants were found to be true revertants and one a second mutation at the site of the original 990 mutation. The oli1 gene from this strain contained a substitution of glycine for valine at residue 22. The proteolipid isolated from this strain had increased electrophoretic mobility relative to the wild-type proteolipid.Abbreviations DCCD dicyclohexylcarbodiimide - SDS sodium dodecyl sulfate - PMSF phenylmethylsulfonyl fluoride - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - SMP submitochondrial particles - mit- mitochondrial point mutant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号