首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Arf GAPs and their interacting proteins   总被引:2,自引:0,他引:2  
  相似文献   

2.
Anne Spang  Yoko Shiba 《FEBS letters》2010,584(12):2646-3305
Arf GAP proteins are a versatile and diverse group of proteins. They control the activity of the GTP-binding proteins of the ARF family by inducing the hydrolysis of GTP that is bound to Arf proteins. The best-studied role of Arf GAPs is in intracellular traffic. In this review, we will focus mainly on the Arf GAPs that play a role in vesicle formation, Arf GAP1, Arf GAP2 and Arf GAP3 and their yeast homologues, Gcs1p and Glo3p. We discuss the roles of Arf GAPs as regulators and effectors for Arf GTP-binding proteins.  相似文献   

3.
The Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to Arf GTP-binding proteins. At least three groups of multidomain Arf GAPs affect the actin cytoskeleton and cellular activities, such as migration and movement, that depend on the cytoskeleton. One role of the Arf GAPs is to regulate membrane remodelling that accompanies actin polymerization. Regulation of membrane remodelling is mediated in part by the regulation of Arf proteins. However, Arf GAPs also regulate actin independently of effects on membranes or Arf. These functions include acting as upstream regulators of Rho family proteins and providing a scaffold for Rho effectors and exchange factors. With multiple functional elements, the Arf GAPs could integrate signals and biochemical activities that result in co-ordinated changes in actin and membranes necessary for a wide range of cellular functions.  相似文献   

4.
Arf GAPs as regulators of the actin cytoskeleton.   总被引:1,自引:0,他引:1  
The Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to Arf GTP-binding proteins. At least three groups of multidomain Arf GAPs affect the actin cytoskeleton and cellular activities, such as migration and movement, that depend on the cytoskeleton. One role of the Arf GAPs is to regulate membrane remodelling that accompanies actin polymerization. Regulation of membrane remodelling is mediated in part by the regulation of Arf proteins. However, Arf GAPs also regulate actin independently of effects on membranes or Arf. These functions include acting as upstream regulators of Rho family proteins and providing a scaffold for Rho effectors and exchange factors. With multiple functional elements, the Arf GAPs could integrate signals and biochemical activities that result in co-ordinated changes in actin and membranes necessary for a wide range of cellular functions.  相似文献   

5.
Family 1 glycosyltransferases are a group of enzymes known to embrace a large range of different substrates. This study devises a method to enhance the range of substrates even further by combining domains from different glycosyltransferases to gain improved substrate specificity and catalytic efficiency. Chimeric glycosyltransferases were made by combining domains from seven different family 1 glycosyltransferases, UGT71C1, UGT71C2, UGT71E1, UGT85C1, UGT85B1, UGT88B1 and UGT94B1. Twenty different chimeric glycosyltransferases were formed of which twelve were shown to be catalytically active. The chimeric enzymes of Arabidopsis thaliana UGT71C1 and UGT71C2 showed major changes in acceptor substrate specificity and were able to glycosylate etoposide significantly better than the parental UGT71C1 and UGT71C2 enzymes, with Kcat and efficiency coefficients 3.0 and 2.6 times higher, respectively. Chimeric glycosyltransferases of UGT71C1 combined with Stevia rebaudiana UGT71E1, also afforded enzymes with high catalytic efficiency, even though the two enzymes only display 38% amino acid sequence identity. These chimeras show a significantly altered regiospecificity towards especially trans-resveratrol, enabling the production of trans-resveratrol-β-4′-O-glucoside (resveratroloside). The study demonstrates that it is possible to obtain improved catalytic properties by combining domains from both closely as well as more distantly related glycosyltransferases. The substrate specificity gained by the chimeras is difficult to predict because factors determining the acceptor specificity reside in the N- terminal as well as the C-terminal domains.  相似文献   

6.
The ADP-ribosylation factor (Arf) Arf GTPase-activating proteins (GAPs) are a family of proteins that induce hydrolysis of GTP bound to Arf. A conserved domain containing a zinc finger motif mediates catalysis. The substrate, Arf.GTP, affects membrane trafficking and actin remodelling. Consistent with activity as an Arf regulator, the Arf GAPs affect both of these pathways. However, the Arf GAPs are likely to have Arf-independent activities that contribute to their cellular functions. Structures of the Arf GAPs are diverse containing catalytic, protein-protein interaction and lipid interaction domains in addition to the Arf GAP domain. Some Arf GAPs have been identified and characterized on the basis of activities other than Arf GAP. Here, we describe the Arf GAP family, enzymology of some members of the Arf GAP family and known functions of the proteins. The results discussed illustrate roles for both Arf-dependent and -independent activities in the regulation of cellular architecture.  相似文献   

7.
Ataxia telangiectasia mutated (ATM) phosphorylates p53 protein in response to ionizing radiation, but the complex phenotype of AT cells suggests that it must have other cellular substrates as well. To identify substrates for ATM and the related kinases ATR and DNA-PK, we optimized in vitro kinase assays and developed a rapid peptide screening method to determine general phosphorylation consensus sequences. ATM and ATR require Mn(2+), but not DNA ends or Ku proteins, for optimal in vitro activity while DNA-PKCs requires Mg(2+), DNA ends, and Ku proteins. From p53 peptide mutagenesis analysis, we found that the sequence S/TQ is a minimal essential requirement for all three kinases. In addition, hydrophobic amino acids and negatively charged amino acids immediately NH(2)-terminal to serine or threonine are positive determinants and positively charged amino acids in the region are negative determinants for substrate phosphorylation. We determined a general phosphorylation consensus sequence for ATM and identified putative in vitro targets by using glutathione S-transferase peptides as substrates. Putative ATM in vitro targets include p95/nibrin, Mre11, Brca1, Rad17, PTS, WRN, and ATM (S440) itself. Brca2, phosphatidylinositol 3-kinase, and DNA-5B peptides were phosphorylated specifically by ATR, and DNA Ligase IV is a specific in vitro substrate of DNA-PK.  相似文献   

8.
Substrate specificities of tobacco chitinases   总被引:15,自引:0,他引:15  
Ten tobacco chitinases (1,4-N-acetyl-β-D-glucosaminide glycanhydrolase, EC 3.2.1.14) were purified from tobacco leaves hypersensitively reacting to tobacco mosaic virus. The 10 enzymes, which belong to five distinct structural classes of plant chitinases, were incubated with several potential substrates such as chitin, a β-1,4 N-acetyl-D-glucosamine (GlcNAc) polymer, chitosan (partially deacetylated chitin), chitin oligomers of variable length and bacterial cell wall. Tobacco chitinases are all endo-type enzymes that liberate oligomers from chitin and are capable of processing the chito-oligomers further at differential rates. Chitin reaction products were separated and quantified by HPLC and differential kinetics of oligomer accumulation and degradation were observed with the distinct classes of chitinases. Depending on the substrate to be hydrolysed, each isoform displayed a different spectrum of activity. For example, class I isoforms were the most active on chitin and (GlcNAc)4–6 whereas class III basic isoforms were the most efficient in inducing bacterial lysis. Class V and class VI chitinases were shown to more readily hydrolyse chitin oligomers than the chitin polymer itself. Together, these data indicate that the 10 tobacco chitinases represent complementary enzymes which may have synergistic effects on their substrates. This paper discusses their implication in plant defense by attacking pathogen's structural components and in plant development by maturing signal molecules.  相似文献   

9.
Substrate specificities of bacterial and human AlkB proteins   总被引:2,自引:3,他引:2  
Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.  相似文献   

10.
11.
12.
13.
The substrate specificities of three extracellular polyhydroxybutyrate (PHB) depolymerases from Alcaligenes faecalis (PhaZAfa), Pseudomonas stutzeri (PhaZPst), and Comamonas acidovorans (PhaZCac), which are grouped into types A and B based on the position of a lipase box sequence in the catalytic domain, were examined for films of 12 different aliphatic polyesters. Each of these PHB depolymerases used was capable of hydrolyzing poly(3-hydroxybutyrate) (P(3HB)), poly(3-hydroxypropionate) (P(3HP)), poly(4-hydroxybutyrate) (P(4HB)), poly(ethylene succinate) (PESU), and poly(ethylene adipate) (PEA) but could not hydrolyze another seven polyesters. In addition, the binding characteristics of substrate binding domains from PhaZAfa, PhaZCac, and PHB depolymerase from Comamonas testosteroni (PhaZCte) were studied by using fusions with glutathione S-transferase (GST). All of fusion proteins adsorbed strongly on the surfaces of polyester granules of P(3HB), P(3HP), and poly(2-hydroxypropionate) (P(2HP)) which was not hydrolyzed by the PHB depolymerases used in this study, while they did not bind on Avicel and chitin granules. The adsorption kinetics of the fusion proteins to the surface of P(3HB) and P(2HP) granules were found to obey the Langmuir isotherm. The cross-area per molecule of fusion protein bound to P(3HB) granules was estimated to be 12±4 nm2/molecule. It has been suggested that the active sites in catalytic domains of PHB depolymerases have a similar conformational structure, and that several amino acids in substrate-binding domains of PHB depolymerases interact specifically with the surface of polyesters.  相似文献   

14.
15.
16.
Substrate specificities of lipases from corn and other seeds   总被引:4,自引:0,他引:4  
Lipases from several seed species were shown to be relatively specific on triacylglycerols containing the major fatty acid components of the storage triacylglycerols in the same species. In a direct comparison using individual triacylglycerol as well as mixed triacylglycerol preparations, highest activities were observed in corn lipase on trilinolein and triolein, castor bean lipase on triricinolein, rapeseed lipase on trierucin, and elm seed lipase on tricaprin. This pattern of fatty acyl specificity was also observed on diacylglycerols, monoacylglycerols, and fatty acyl 4-methylumbelliferone, although the pattern became less distinct. The seed lipases were inactive on lecithins. Corn lipase was more active on tri- than di- or monolinolein, and released linoleic acids from both primary and secondary positions. As judged from the kinetics of hydrolysis of rac-glyceryl-2,3-stearate-1-oleate and rac-glyceryl-1,3-stearate-2-oleate, and of trilinolein and dilinoleins, corn lipase exerted some degree of preference in releasing fatty acid from the primary than the secondary position of a triacylglycerol. At the primary position, corn lipase was more active on oleyl ester than stearyl ester.  相似文献   

17.
18.
Summary Enzymatic degradations of 5 different polyhydroxyalkanoates (PHA) were investigated at 37°C in the aqueous solutions (pH 7.4) containing different microbial enzymes of 16 lipases and 5 PHA depolymerases. The substrate specificities of microbial PHA depolymerases on hydrolysis of polyhydroxyalkanoates were distinguished from those of microbial lipases.  相似文献   

19.
R K Harrison  R L Stein 《Biochemistry》1990,29(16):3813-3816
Substrate specificities, as reflected in kc/Km, were determined for the peptidyl prolyl cis-trans isomerase activities of cyclophilin and the FK-506 binding protein (FKBP). The substrates investigated were peptides of the general structure Suc-Ala-Xaa-Pro-Phe-p-nitroanilide, where Xaa = Gly, Ala, Val, Leu, Phe, His, Lys, on Glu. While kc/Km for cyclophilin-catalyzed isomerization shows little dependence on Xaa, kc/Km values for FKBP-catalyzed isomerization display a marked dependence on Xaa and vary over 3 orders of magnitude. An important outcome of this work is the discovery that Suc-Ala-Leu-Pro-Phe-pNA is a reactive substrate for FKBP (kc/Km = 640,000 M-1 s-1). This substrate can be used with FKBP concentrations that are low enough to allow, for the first time, accurate determinations of Ki values for tight-binding inhibitors of FKBP. Using this new assay, we found that FK-506 inhibits FKBP with Ki = 1.7 +/- 0.6 nM. The results of this work support the hypothesis that cyclophilin and FKBP are members of a family of peptidyl prolyl cis-trans isomerases and that the members of this family possess distinct substrate specificities that allow them to play diverse physiologic roles.  相似文献   

20.
The abilities of insulin and EGF stimulated protein kinases to phosphorylate a series of exogenous substrates were compared using wheat germ lectin purified preparations of solubilized rat liver membranes. Three different kinds of substrates were found: substrates phosphorylated primarily by insulin stimulated kinase, substrates phosphorylated primarily by EGF stimulated kinase and substrates phosphorylated by both kinases to a similar extent. These results indicate that the insulin and the EGF receptor kinase have different, but overlapping, substrate specificities. In vivo, phosphorylation of cellular proteins by various hormone receptor kinases may be part of the signal transmission process for actions of the hormones. Different substrate specificities of kinases of different hormone receptors may therefore represent an important mechanism to preserve the specificity of the hormonal signal at the post receptor level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号