首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth inhibitory activities of 6 endogenous growth inhibitors isolated from light-grown dwarf peas (Pisum sativum cv. Progress No. 9) were examined in the epicotyl of dark-grown seedlings of the same cultivar in the dark in order to examine the possible contribution of these compounds to the growth inhibition brought about by red light. The activities of these natural inhibitors, including two A-2 and A-2 of as yet undetermined structure, were compared with those of synthetic growth retardants and benzyladenine. Samples were applied directly into the epicotyls via a glass capillary tube. In 24-h tests doses for a 25% inhibition (I25) were: A-2, 4.3 × 10-2: cis-xanthoxin, 1.2 × 10-1 ; A-2, 1.6 × 10-1; trans-xanthoxin, 1.2; R,S-dihydromaleimide, 3.5 × 102 and pisatin, 4.0 × 102 nmol plant-1 . In 72-h tests, I25's were: benzyladenine, 1.5; AMO-1618 (ammonium-(5-hydroxycarvacryl)-trimethylchloride piperidine carboxylate), 2.4; R,S-dihydromaleimide, 4.0 × 102 and CCC (chlorocholine chloride), 1.1 × 103 nmol plant-1. -D-Glucosyl-R-dihydromaleimide had no activity at all. Benzyladenine caused the thickening as well as elongation inhibition of the epicotyls of intact plants. The possible involvement of A-2 and in the red light growth inhibition of dwarf peas is discussed.Abbreviations AMO-1618 ammonium-(5-hydroxycarvacryl)-trimethylchloride piperidine carboxylate - CCC chlorocholine chloride - G-DHMD -D-glucosyl-R-dihydromaleimide - I25 dose required for a 25% growth inhibition - R red light author for correspondence  相似文献   

2.
In order to clarify the role of endogenous growth inhibitors A-2α and A-2β in a dwarf pea plant, red light (emission peak 657 nm) treated, 9-d-old seedlings of dwarf pea (Pisum sativum L. cv. Progress No. 9) were transferred to darkness, and the resulting changes in growth rate and concentrations of A-2α and A-2β were monitored. The growth rate of the epicotyls increased, and the concentration of the inhibitors in the epicotyls decreased, according to sigmoidal time courses. The relationship between the logarithms of the concentration of the inhibitors and the corresponding growth rate was linear. These results suggest that A-2α and A-2β, may play an important role in the growth recovery process of the dwarf pea cultivar after termination of red light irradiation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Clark  L.J.  Bengough  A.G.  Whalley  W.R.  Dexter  A.R.  Barraclough  P.B. 《Plant and Soil》1999,209(1):101-109
Values of the maximum axial growth pressure (σmax) of seedling pea (Pisum sativum L.) roots reported in the literature, obtained using different apparatuses and cultivars, range from 0.3 MPa to 1.3 MPa. To investigate possible reasons for this large range, we studied the effect of apparatus and cultivar on measurements of σmax in peas. We describe four types of apparatus which can be used to measure axial root growth force and hence σmax, and used them to measure σmax in seedling pea roots using cultivar Meteor. Two of these apparatuses were also used to compare σmax for three pea cultivars (Helka, Meteor and Greenfeast). Both cultivar and apparatus significantly affected σmax , but there were greater differences between apparatuses than between the three cultivars. Estimating root cross-sectional area from the diameter of cross-sections, rather than from in situ measurements (i.e. measurements made with the root still in place in the apparatus) may explain these differences. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
In this paper we describe an experimental approach which allows turgor (p) in an impeded root to be measured without the need to remove the root from the impeding environment. The maximum axial growth pressure (σmax) generated by completely impeded pea (Pisum sativum L.) roots was measured using a novel apparatus incorporating a force transducer. The apparatus was designed so that it was possible to gain access to the impeded root with the microcapillary of a pressure probe and so obtain in situ measurements of P. Turgor in cells in the apical region of impeded roots was 0.78 MPa, compared with 0.55 MPa in unimpeded roots. In impeded roots, σmax was 0.52 MPa, showing that the pressure component resulting from cell wall tension (W, where W=P–σ) decreased from 0.55 to 0.26 MPa as the roots became impeded. When impeded roots were removed from the apparatus, there was no decrease in P over the following 90 min. Impedance did not cause P to change in the non-elongating part of the roots further from the apex.  相似文献   

5.
6.
Cuttings of pea (Pisum sativum L. cv Marma) were treated with 1-aminocyclopropane-l-carboxylic acid (ACC). This treatment caused increased ethylene production and reduction of root formation. The effect of 0.1 mM ACC on the level of endogenous indole-3-acetic acid (IAA) in the rooting zone and in the shoot apex was analyzed by gas chromatography-single ion monitoring mass spectrometry or by high pressure liquid chromatography with fluorimetric detection (HPLC). Concentrations of indole-3-acetylaspartic acid (IAAsp) in the stem bases were also determined using HPLC. The ACC treatment had little effect on the IAA level in the base measured after 24 h, but caused a considerable decrease during the 3 following days. IAAsp increased in the base on days 1, 2 and 3 and then declined. The build up of IAAsp in the base was not affected by ACC during the first two days of the treatment, but later this conjugate decreased more rapidly than in controls. No effect of the ACC treatment was found on the level of IAA in the apex. IAA (1 µM) applied to the cuttings during 24 h reduced the number of roots formed. The possibility that IAA-induced ethylene is involved in this response was investigated.Our results support earlier evidence that the inhibitory effect of ethylene on rooting in pea cuttings is due to decreased IAA levels in the rooting zone. The inhibitory effect of applied IAA is obtained if the internal IAA level is maintained high during the first 24 h, whereas stimulation of rooting occurs if the internal IAA level remains high during an extended period of time. Our results do not support the suggestion that ethylene mediates the inhibitory effect of applied IAA.  相似文献   

7.
Abstract. A system is described whereby seedling development can be analysed in terms of growth rates of specific 1 mm regions of the hypocotyl. The technique involves time-lapse photography of marked hypocotyls in a specially designed chamber which accommodates seedlings in various orientations with respect to gravity, and under irradiation regimes differing in light quality, quantity and direction. The results of a preliminary study of the upward growth of etiolated or green cress seedlings in darkness or overhead while light are reported. Highest growth rates in etiolated seedlings were observed in zones in the upper one-third of ihe hypocotyl. In green seedlings, growth was more prominent within the subapical zones. Light further restricted growth of the median and basal zones in both types of seedling. However, in their immediate responses to the onset of irradiation, green and etiolated seedlings differed markedly. In etiolated seedlings, recovery of growth at the apex was accompanied by the development of inhibition in the median-basal regions; green seedlings showed a transient inhibition of growth in the apical zone together with a strong immediate inhibition in the median-basal regions.  相似文献   

8.
Analysis of growth during phototropic curvature of cress hypocotyls   总被引:3,自引:3,他引:0  
Abstract. Growth rates throughout an organ curving phototropically under continuous, unilateral while light were monitored by lime-lapse photography of cress hypocotyls marked into 1 mm sections by two rows of ion-exchange beads. Curvature resulted from an integrated sequence of changes in growth rate on each side of the organ, but the actual patterns of change and, therefore rales of curvature, differed within even this one species, depending upon the immediate pretreatment of the seedlings. Transference of seedlings from darkness to unilateral irradiation gave immediate growth inhibition on both sides of the organ. Curvature resulted from differential recovery of growth rate, being seen first on the shaded side, most prominently in the apical regions; only 2h after initial exposure to light did growth recover on the lit (lower) side. On the other hand, transfer of seedlings from omnilateral to unilateral irradiation of the same intensity resulted in simultaneous growth inhibition on the irradiated side and stimulated growth on the shaded side: this growth stimulation of the shaded side was greater than occurred in totally darkened control plants.  相似文献   

9.
Analysis of growth during light-induced hook opening in cress   总被引:1,自引:1,他引:0  
Abstract. Growth in various regions of the hypocotyls of dark-grown cress seedlings before and after exposure lo continuous white light has been analysed by time-lapse photography. In the dark, growth in the hook was minimal, the upward growth of the seedling being sustained by extension of the shank, especially the uppermost zones. Following irradiation, the hook and the remainder of the hypocotyl showed dissimilar growth responses. Previously growing regions of the shank were inhibited while zones within the hook, especially the apical end of the inner (concave) side, showed marked growth stimulation. These changes in growth rates commenced within 1 h from exposure to the light stimulus and thus considerably preceded any observable changes in hook angle.  相似文献   

10.
Ethylene as a possible mediator of light-induced inhibition of root growth   总被引:1,自引:0,他引:1  
Eliasson, L. and Bollmark, M. 1988. Ethylene as a possible mediator of light-induced inhibition of root growth. - Physiol. Plant. 72: 605–609.
Pea seedlings ( Pisum sativum L. cv. Weibull's Marma) were used to investigate the possible role of ethylene in light-induced inhibition of root elongation. Illumination of the roots with white light inhibited root elongation by 40–50% and increased ethylene production by the roots about 4-fold. Our main approach was to use exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), supplied in the growth solution, to monitor ethylene production of the roots independent of light treatment. Ethylene production of excised root tips increased with increasing ACC concentrations. The rate of ethylene production in dark-grown roots treated with 0.1 μ M ACC was similar to that caused by illumination. Low ACC concentrations (0.01–0.1 μ M ) decreased the rate of root elongation, especially in seedlings grown in the dark, and 0.1 μ M ACC inhibited elongation to about the same extent as light. In light the roots curved and grew partly plagiogravitropically. This effect was also simulated by the 0.1 μ M ACC treatment. At 1 μ M and higher concentrations, ACC inhibited root growth almost completely and caused conspicuous curvatures of the root tips both in light and darkness. Inhibitors of ethylene synthesis and action partially counteracted the inhibition of root elongation caused by light. These observations suggest that the increase in ethylene production caused by light is at least partly responsible for the decreased growth of light-exposed roots.  相似文献   

11.
The distribution of hydroxyproline-rich glycoprotein (HRGP) mRNAs in the shoots of dark-grown and irradiated cucumber ( Cucumis sativus L. cv. Burpee pickler) and pea ( Pisum sativum L. cv. Alaska) was studied. A cloned genomic DNA fragment encoding carrot ( Daucus carota ) root extensin (pDC5A1) was used to measure HRGP mRNAs from cucumber and pea along the length of dark-grown and irradiated shoots. There was a marked difference in the levels of HRGP mRNAs isolated from apical and basal regions of cucumber. Whereas apical, elongating regions had low levels of HRGP mRNAs, basal regions of the shoot had high levels. Levels of HRGP mRNAs were also compared in shoots of dark-grown and irradiated cucumber. Although light inhibits hypocotyl growth, it had no effect on levels of HRGP mRNAs. There was no gradient in the distribution of HRGP mRNAs along the epicotyl of dark-grown pea. As was the case with cucumber, light did not affect the accumulation of HRGP mRNAs in pea shoots. We conclude that light does not affect elongation by regulating the accumulation of HRGP mRNAs. The gradient of accumulation of HRGP mRNAs along the hypocotyl of cucumber probably reflects differences in cellular differentiation along the shoot.  相似文献   

12.
13.
Two new growth inhibitors, R-dihydromaleimide and R-dihydromaleimide β-d-glucoside, were isolated from 2-week-old pea shoots.  相似文献   

14.
In the present study, root hydrotropism in an agravitropic mutant of Pisum sativum L. grown in vermiculite with a steep water potential gradient was examined. When wet and dry vermiculite were placed side by side, water diffused from the wet (-0.04 MPa) to the dry (-1.2 MPa) and a steep water potential gradient became apparent in the dry vermiculite close to the boundary between the two. The extent and location of the gradient remained stable between the fourth and sixth day after filling a box with vermiculite, and the steepest gradient (approx. 0.02 MPa mm-1) was found in the initially dry vermiculite between 60 and 80 mm from the boundary. When seedlings with 25-35 mm long roots were planted in the initially dry vermiculite near where the gradient had been established, each of the main roots elongated toward the wet vermiculite, i.e. toward the high water potential. Control roots elongated without curvature in both the wet and the dry vermiculite, in which no water potential gradient was detectable. These results show that pea roots respond to the water potential gradient around them and elongate towards the higher water potential. Therefore, positive hydrotropism occurs in vermiculite just as it does in air. Hydrotropism in soil may be significant when a steep water potential gradient is apparent, such as when drip irrigation is applied.  相似文献   

15.
In pea, normal pod (pericarp) growth requires the presence of seeds; and in the absence of seeds, gibberellins (GAs) and/or auxins can stimulate pericarp growth. To further characterize the function of naturally occurring pea GAs and the auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), on pea fruit development, profiles of the biological activities of GA3, GA1, and 4-Cl-IAA on pericarp growth were determined separately and in combination on pollinated deseeded ovaries (split-pericarp assay) and nonpollinated ovaries. Nonpollinated ovaries (pericarps) responded differently to exogenous GAs and 4-Cl-IAA than pollinated deseeded pericarps. In nonpollinated pericarps, both GA3 and 4-Cl-IAA stimulated pericarp growth, but GA3 was significantly more active in stimulating all measured parameters of pericarp growth than 4-Cl-IAA. 4-Cl-IAA, GA1, and GA3 were observed to stimulate pericarp growth similarly in pollinated deseeded pericarps. In addition, the synergistic effect of simultaneous application of 4-Cl-IAA and GAs on pollinated deseeded pericarp growth supports the hypothesis that GAs and 4-Cl-IAA are involved in the growth and development of pollinated ovaries.  相似文献   

16.
The variability of the developmental responses of two contrasting cultivars of pea (Pisum sativum) was studied in relation to the genetic diversity of their nitrogen-fixing symbiont Rhizobium leguminosarum bv. viciae. A sample of 42 strains of pea rhizobia was chosen to represent 17 genotypes predominating in indigenous rhizobial populations, the genotypes being defined by the combination of haplotypes characterized with rDNA intergenic spacer and nodD gene regions as markers. We found contrasting effects of the bacterial genotype, especially the nod gene type, on the development of nodules, roots and shoots. A bacterial nod gene type was identified that induced very large, branched nodules, smaller nodule numbers, high nodule biomass, but reduced root and aerial part development. The plants associated with this genotype accumulated less N in shoots, but N concentration in leaves was not affected. The results suggest that the plant could not control nodule development sustaining the energy demand for nodule functioning and its optimal growth. The molecular and physiological mechanisms that may be involved are discussed.  相似文献   

17.
Branca, C, De Lorenzo, G. and Cervone, F. 1988. Competitive inhibition of the auxin-induced elongation by α-D-oligogalacturonides in pea stem segments. - Physiol. Plant. 72: 499–504.
α-D-galacturonide oligomers (OG) were prepared by partial hydrolysis of sodium polypectate with an homogeneous Aspergillus niger endopolygalacturonase (EC 3.2.1.15). OG, obtained after digestion for 10, 20, 30, 60, 120 min and 24 h, were assayed for their ability to interfere with the IAA-induced elongation of pea ( Pisum sativum L. cv. Alaska) stems. Maximum inhibiting activity was exhibited by oligomers with an approximate degree of polymerization higher than 8. Inhibition by longer OG was much lower, and the products of the 24 h digestion and the unhydrolysed polypectate were ineffective. The addition of OG to pea stems caused a parallel shift to the right of the IAA dose-effect curve. The shift depended on the amount of OG used, showing that oligogalacturonides behave as competitive antagonists of IAA. The presence of OG caused the disappearance of the second maximum of the elongation rate and reduced the first maximum. OG were also tested for their ability to inhibit IAA-induced ethylene evolution of pea stem segments. Maximal inhibition was obtained with OG of the same size as those that interfered with IAA-induced elongation. Inhibition of the auxin action seemed to be specific as OG did not interfere with the activity of gibberellic acid (GA3) or kinetin. It was concluded that oligogalacturonides strongly interfere with the activity of IAA, although they are by themselves incapable to influence the elongation of pea stem segments directly.  相似文献   

18.
Misra  R.K. 《Plant and Soil》1997,188(1):161-170
Although lateral roots may contribute significantly towards growth and nourishment of plants, the mechanics of their elongation behaviour in strong soils is not well known. The aim of this study is to report maximum axial growth pressures (p) and maximum elongation rates (E) of the lateral roots of an annual herbaceous plant (pea) and a woody perennial (eucalypt). As such measurements have not been reported previously, measurements of P and E for lateral roots were compared with the primary roots of pea for which reports are widespread. Values of P were estimated from the measured maximum values of axial force and root diameter on single, intact roots of seedlings in the laboratory. Additional measurements of both P and E were made for the lateral roots of pea when the growth of the remaining root axes was stopped (with removal of tips) to determine the overall effects of root-growth-inhibition on P and E of single roots.Values of P and E for lateral roots of pea were significantly greater than those for the lateral roots of eucalypt. Although root diameter for the primary roots of pea were similar to those for the lateral roots of eucalypt, the former exerted nearly twice as much pressure as the latter. The lateral roots of pea elongated significantly slower than the primary roots; however, P of lateral roots was significantly lower than the primary roots when elongation of all other roots was inhibited during the measurements. Production and/or development of lateral roots increased when elongation of the remaining roots (both primary and lateral roots) of pea seedlings was restricted due to the removal of root tips and exposure of one of the lateral roots to high strength. In general, maximum axial force exerted by primary and lateral roots was similar for roots of <1 mm diameter. However, primary roots exerted greater maximum axial force than the lateral roots when root diameter was >1 mm. As axial pressure of lateral roots was independent of root diameter, thickening of root tips is less likely to assist penetration of lateral roots in strong soils.  相似文献   

19.
150多年前, 孟德尔进行了豌豆7对相对性状的杂交试验, 发现了遗传学的两个基本规律。1900年, 孟德尔定律被重新发现以后, 人们从生理生化、细胞和分子水平等不同层次上对豌豆的这7个性状进行了深入研究。近年, 随着分子生物学技术的发展, 已有种子形状(R)、茎的长度(Le)、子叶颜色(I)和花的颜色(A)等4个性状的基因被克隆; 未成熟豆荚的颜色(Gp)、花的着生位置(Fa)和豆荚形状(V)的基因已被定位在各自的连锁群上。4个孟德尔基因的鉴定和克隆加深了人们对基因概念的理解:如基因功能的多样性、在分子水平上基因变异原因的多样性、显性和隐性的分子实质等。在遗传学教学中, 把孟德尔基因克隆和研究的最新进展介绍给学生, 在分子水平上诠释经典遗传规律, 有助于提高学生的学习兴趣, 帮助学生全面把握从形式遗传学到分子遗传学的内容和遗传学的发展方向。  相似文献   

20.
Excision of a growing stem causes local wound responses, such as membrane depolarization and growth inhibition, as well as effects at larger distances from the cut. In this study, cucumber hypocotyls were excised 100mm below the hook, so that the growing region was beyond the reach of the wound-induced depolarization (up to 40mm). Even at such a distance, the cut still caused a considerable and rapid drop in the hypocotyl growth rate. This growth response is not a direct wound response because it does not result from the cut-induced depolarization and because it can be simulated by root pressure manipulation (using a pressure chamber). The results indicate that the growth response resulted from the rapid release of the xylem pressure upon excision. To test this conclusion we measured the xylem pressure by connecting a pressure probe to the cut surface of the stem. Xylem pressure (Px) was found to be +10 to +40kPa in cucumber hypocotyls and -5 to -10 kPa or lower in pea epicotyls. Excision of the cucumber hypocotyl base led to a rapid drop in Px to negative values, whereas excision in pea led to a rapid rise in Px to ambient (zero) pressure. These fast and opposite px changes parallel the excision-induced changes in growth rate (GR): a decrease in cucumber and a rise in pea. The sign of the endogenous xylem pressure also determined whether excision induced a propagating depolarization in the form of a slow wave potential (SWP). Under normal circumstances pea seedlings generated an SWP upon excision whereas cucumber seedlings failed to do so. When the Px in cucumber hypocotyls was experimentally inverted to negative values by incubating the cumber roots in solutions of NaCN or n-ethylmaleimide, excision caused a propagating depolarization (SWP). The experiment shows that only hydraulic signals in the form of positive Px steps are converted into propagating electric SWP signals. These propagating depolarizations might be causally linked to systemic ‘wound’ responses, which occur independently of the short-distance or direct wound responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号