首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella enterica can obtain pyridine from exogenous nicotinamide mononucleotide (NMN) by three routes. In route 1, nicotinamide is removed from NMN in the periplasm and enters the cell as the free base. In route 2, described here, phosphate is removed from NMN in the periplasm by acid phosphatase (AphA), and the produced nicotinamide ribonucleoside (NmR) enters the cell via the PnuC transporter. Internal NmR is then converted back to NMN by the NmR kinase activity of NadR. Route 3 is seen only in pnuC* transporter mutants, which import NMN intact and can therefore grow on lower levels of NMN. Internal NMN produced by either route 2 or route 3 is deamidated to nicotinic acid mononucleotide and converted to NAD by the biosynthetic enzymes NadD and NadE.  相似文献   

2.
The gene (ybeN) coding for nicotinate mononucleotide adenylyltransferase, an NAD(P) biosynthetic enzyme, has been identified and overexpressed in Escherichia coli. This enzyme catalyzes the reversible adenylation of nicotinate mononucleotide and shows product inhibition. The rate of adenylation of nicotinate mononucleotide is at least 20 times faster than the rate of adenylation of nicotinamide mononucleotide.  相似文献   

3.
The biosynthesis of NAD has been examined in 3T3 cells. The net synthesis of pyridine nucleotides does not occur when cells are cultured in the absence of performed pyridine ring compounds; however, growth continues normally for up to four cell doublings resulting in cells with a total pyridine nucleotide content that is reduced by as much as 12-fold. The mechanism that adjust the relative amounts of NADP and NAD are also altered such that the amount of NADP relative to NAD increases 5-fold. Both nicotinate and nicotinamide can be used as a precursor for NAD biosynthesis, however nicotinate is utilized less efficiently than nicotinamide. The presence of functional pathways for the biosynthesis of NAD from nicotinate via nicotinate mononucleotide and nicotinate adenine dinucleotide and from nicotinamide via nicotinamide mononucleotide has been demonstrated by identification of biosynthetic intermediates following short term exposure of cells to radiolabelled precursors. When cells are grown in Dulbecco's modified Eagle's medium which contains 33 μM nicotinamide the biosynthesis of NAD proceeds by a single pathway with nicotinamide mononucleotide as the only intermediate. Nicotinamide ribonucleoside which previously has been postulated to be an intermediate in the conversion of nicotinamide to NAD is not an intermediate in NAD biosynthesis.  相似文献   

4.
1. The pathway of NAD synthesis in mammary gland was examined by measuring the activities of some of the key enzymes in each of the tryptophan, nicotinic acid and nicotinamide pathways. 2. In the tryptophan pathway, 3-hydroxyanthranilate oxidase and quinolinate transphosphoribosylase activities were investigated. Neither of these enzymes was found in mammary gland. 3. In the nicotinic acid pathway, nicotinate mononucleotide pyrophosphorylase, NAD synthetase, nicotinamide deamidase and NMN deamidase were investigated. Both NAD synthetase and nicotinate mononucleotide pyrophosphorylase were present but were very inactive. Nicotinamide deamidase, if present, had a very low activity and NMN deamidase was absent. 4. In the nicotinamide pathway both enzymes, NMN pyrophosphorylase and NMN adenylyltransferase, were present and showed very high activity. The activity of the pyrophosphorylase in mammary gland is by far the highest yet found in any tissue. 5. The apparent K(m) values for the substrates of these enzymes in mammary gland were determined. 6. On the basis of these investigations it is proposed that the main, and probably only, pathway of synthesis of NAD in mammary tissue is from nicotinamide via NMN.  相似文献   

5.
Bacterial NadM-Nudix is a bifunctional enzyme containing a nicotinamide mononucleotide (NMN) adenylyltransferase and an ADP-ribose (ADPR) pyrophosphatase domain. While most members of this enzyme family, such as that from a model cyanobacterium Synechocystis sp., are involved primarily in nicotinamide adenine dinucleotide (NAD) salvage/recycling pathways, its close homolog in a category-A biodefense pathogen, Francisella tularensis, likely plays a central role in a recently discovered novel pathway of NAD de novo synthesis. The crystal structures of NadM-Nudix from both species, including their complexes with various ligands and catalytic metal ions, revealed detailed configurations of the substrate binding and catalytic sites in both domains. The structure of the N-terminal NadM domain may be exploited for designing new antitularemia therapeutics. The ADPR binding site in the C-terminal Nudix domain is substantially different from that of Escherichia coli ADPR pyrophosphatase, and is more similar to human NUDT9. The latter observation provided new insights into the ligand binding mode of ADPR-gated Ca2+ channel TRPM2.  相似文献   

6.
The functional pathways of nicotinamide adenine dinucleotide (NAD) biosynthesis and their regulation were studied in the dimorphic fungus Candida albicans. The presence of a functional endogenous pathway of NAD biosynthesis from tryptophan was demonstrated. In addition, nicotinamide served as an efficient salvage precursor for NAD biosynthesis but nicotinate was not utilized. The pathway for nicotinamide utilization involved nicotinate and nicotinate nucleotides as intermediates, suggesting that the failure to utilize nicotinate involves a transport defect. The mechanisms that regulate NAD levels during exponential growth operated to maintain constant NAD levels when NAD biosynthesis occurred exclusively from endogenous or salvage pathways or from a combination of the two. The regulation also operated such that the salvage pathway was preferentially utilized.  相似文献   

7.
A specific nicotinamide mononucleotide amidohydrolase which catalyzes the stoichiometric conversion of NMN to nicotinate mononucleotide and ammonia has been partially purified from an extract of Propionibacteriumshermanii. The reaction has optimum activity at pH 5.6, a Km of 70 μM, and an experimental activation energy of 14.5 Kcal/mole. The enzyme appears to be highly specific for NMN. Neither free nicotinamide nor NAD, NADH, NADP, NADPH compete with NMN. Numerous substances such as isonicotinic acid hydrazide and quinolinic acid are also without effect. It can be stored at ?15° in 12% glycerol, but is somewhat unstable in the absence of this solvent. The enzyme is composed of a heatstable and a heat-sensitive subunit. This enzyme considerably simplifies the pyridine nucleotide cycle, and may, besides this salvage function for NAD, play a role in B12 biosynthesis and in the bacterial DNA ligase reaction.  相似文献   

8.
As the rate-limiting enzyme, catalyzing the first reaction in NAD salvage synthesis, nicotinate phosphoribosyltransferase (NAPRTase, EC 2.4.2.11) is of important interest for studies of intracellular pyridine nucleotide pool regulation. We have purified NAPRTase 520-fold from Brevibacterium ammoniagenes ATCC 6872 without using an over-expression system by applying acid treatment, salt fractionation, Ca-phosphate gel treatment, anion exchange column chromatography and size-exclusion gel filtration. Unlike this enzyme from other sources, B. ammoniagenes NAPRTase was found to be controlled by the feedback inhibition by the end product NAD with K(i)=0.7+/-0.1 mM. The reaction products, pyrophosphate and nicotinate mononucleotide, also decreased the enzyme activity, as did other intermediates of NAD synthesis, such as AMP, ADP and a NAD direct precursor, nicotinate adenine dinucleotide or deamido NAD. The enzyme was observed to require a nucleoside triphosphate for its activity and showed the maximum affinity for ATP. The specificity, however, turned out to be poor, and ATP could be substituted by other nucleoside triphosphates as well as by sodium triphosphate. The kinetic characteristics of the enzyme are reported. For the first time, our data have experimentally revealed such complicated stimulatory and inhibitory effects by the intermediates of NAD biosynthesis on one of its salvage enzymes, NAPRTase. On the basis of these data, the key role of NAPRTase is discussed in light of the regulation of NAD metabolism in B. ammoniagenes.  相似文献   

9.
There are three NAD biosynthetic pathways: the nicotinic acid-NAD, nicotinamide-NAD, and quinolinic acid (derived from tryptophan)-NAD pathways. To discover the main pathways of NAD biosyntheses in various tissues of the rat, the tissue distribution of nicotinamidase, quinolinate phosphoribosyltransferase, nicotinate phosphoribosyltransferase, nicotinamide phosphoribosyl-transferase, nicotinamide mononucleotide adenylyltransferase, and NAD+ synthetase were investigated. All of the tissues could synthesize NAD from nicotinamide, judging from that the activities of nicotinamide phosphoribosyltransferase and NMN adenylyltransferase detected in all of the tissues. From nicotinic acid, only liver, kidneys, and heart could. Liver and kidney can also synthesize NAD de novo from quinolinic acid.  相似文献   

10.
The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.  相似文献   

11.
NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other''s NAD supply by providing alternative precursors.  相似文献   

12.
1. The relative efficiencies of nicotinate, quinolinate and nicotinamide as precursors of NAD(+) were measured in the first leaf of barley seedlings. 2. In small amounts, both [(14)C]nicotinate and [(14)C]quinolinate were quickly and efficiently incorporated into NAD(+) and some evidence is presented suggesting that NAD(+) is formed from each via nicotinic acid mononucleotide and deamido-NAD. 3. [(14)C]Nicotinamide served equally well as a precursor of NAD(+) and although significant amounts of [(14)C]NMN were detected, most of the [(14)C]NAD(+) was derived from nicotinate intermediates formed by deamination of [(14)C]nicotinamide. 4. Radioactive NMN was also a product of the metabolism of [(14)C]nicotinate and [(14)C]quinolinate but most probably it arose from the breakdown of [(14)C]NAD(+). 5. In barley leaves where the concentration of NAD(+) is markedly increased by infection with Erysiphe graminis, the pathways of NAD(+) biosynthesis did not appear to be altered after infection. A comparison of the rates of [(14)C]NAD(+) formation in infected and non-infected leaves indicated that the increase in NAD(+) content was not due to an increased rate of synthesis.  相似文献   

13.
NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the “amidated” and “deamidated” routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT), which in mammals comprises three distinct isozymes, and NAD synthetase (NADS). First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes''rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme''s substrate NaAD (nicotinic acid adenine dinucleotide). In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease.  相似文献   

14.
Nicotinate phosphoribosyltransferase (NAPRTase) in Escherichia coli mediates the formation of nicotinate mononucleotide, a direct precursor of nicotinamide adenine dinucleotide (NAD), from nicotinate and 5-phosphoribosyl-1-pyrophosphate. Specifically, NAPRTase contributes to NAD synthesis by utilizing intracellular nicotinate formed from NAD degradation products, which are recycled by NAD cycle enzymes and exogenous nicotinate when it is available. In previous studies, it has been tacitly assumed that almost all NAD cycle enzymes are localized in the cytoplasm of E. coli. The results of this investigation provide evidence that NAPRTase is a periplasmic (extracytoplasmic) enzyme. The osmotic shock of exponential-phase cells of E. coli K-12 and ML 308-225 resulted in the release of 63 to 72% and 42 to 48%, respectively, of the NAPRTase into the shock medium. In addition, when exponential cells of strains K-12 and ML 308-225 were converted into spheroplasts, 75 to 84% and 54 to 68%, respectively, of the enzyme was released into the spheroplast medium. Since previous estimates of the effective levels of NAPRTase present in putative repressed and derepressed E. coli cells appeared to be very low, a more convenient and accurate alternative method for the evaluation of NAPRTase in whole cells was developed. The results show that NAPRTase is subject only to a modest degree of enzyme repression. In addition, no evidence was found for the presence of a protein or low-molecular-weight inhibitor of the enzyme in repressed cells.  相似文献   

15.
While mammals and fungi possess nicotinate/nicotinamide mononucleotide adenyltransferase (NMNAT) isoforms, Arabidopsis thaliana only contains a single NMNAT gene, AtNMNAT (At5g55810). We analyzed the enzymatic activity of the AtNMNAT-encoded protein to determine the role of AtNMNAT in plant development. AtNMNAT catalyzed the synthesis of nicotinate adenine dinucleotide (NaAD) from nicotinate mononucleotide (NaMN) in the Preiss-Handler-dependent pathway, and of nicotinamide adenine dinucleotide (NAD) from nicotiamide mononucleotide (NMN) in the Preiss-Handler-independent pathway. Prominent AtNMNAT expression was detected in the male gametophyte. Moreover, AtNMNAT expression was spatio-temporally regulated during microspore development and pollen tube growth. Disruption of the AtNMNAT gene (atnmnat mutant) was characterized by a decrease in NAD content in pollen. Cytological examinations revealed that the atnmnat mutant was gametophytically impaired in in vivo and in vitro pollen tube growth. Our results suggest that metabolic fulfillment via the NAD pathway is indispensable for normal pollen growth and subsequent normal seed production.  相似文献   

16.
Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which is derived from NAD, have important roles as a redox carriers in metabolism. A combination of de novo and salvage pathways contribute to the biosynthesis of NAD in all organisms. The pathways and enzymes of the NAD salvage pathway in yeast and animals, which diverge at nicotinamide, have been extensively studied. Yeast cells convert nicotinamide to nicotinic acid, while mammals lack the enzyme nicotinamidase and instead convert nicotinamide to nicotinamide mononucleotide. Here we show that Arabidopsis thaliana gene At2g22570 encodes a nicotinamidase, which is expressed in all tissues, with the highest levels observed in roots and stems. The 244-residue protein, designated AtNIC1, converts nicotinamide to nicotinic acid and has a Km value of 118 +/- 17 microM and a Kcat value of 0.93 +/- 0.13 sec(-1). Plants homozygous for a null AtNIC1 allele, nic1-1, have lower levels of NAD and NADP under normal growth conditions, indicating that AtNIC1 participates in a yeast-type NAD salvage pathway. Mutant plants also exhibit hypersensitivity to treatments of abscisic acid and NaCl, which is correlated with their inability to increase the cellular levels of NAD(H) under these growth conditions, as occurs in wild-type plants. We also show that the growth of the roots of wild-type but not nic1-1 mutant plants is inhibited and distorted by nicotinamide.  相似文献   

17.
Li YF  Bao WG 《FEMS yeast research》2007,7(5):657-664
NAD holds a key position in metabolism and cellular regulatory events as a major redox carrier and a signalling molecule. NAD biosynthesis pathways have been reconstructed and compared in seven yeast species with completely sequenced genomes, including Saccharomyces cerevisiae, Kluyveromyces lactis, Candida glabrata, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and Schizosaccharomyces pombe. Both amino acid and nucleotide sequence similarity analysis in silico indicated that de novo NAD biosynthesis might not exist in K. lactis, C. glabrata and Schiz. pombe, while other species have the kynurenine pathway. It also showed that the NAD salvage pathway via nicotinic acid and nicotinic acid mononucleotide is conserved in all of these yeasts. Deletion of KlNPT1 (the gene for nicotinate phosphoribosyl-transferase) is lethal, which demonstrates that this salvage pathway, utilizing exogenous nicotinic acid, is the unique route to synthesize NAD in K. lactis. The results suggested that the basis of the variation of niacin requirements in yeasts lies in their different combinations of NAD biosynthesis pathways. The de novo pathway is absent but the salvage pathway is conserved in niacin-negative yeasts, while both pathways coexist in niacin-positive yeasts.  相似文献   

18.
Nicotinamide-adenine dinucleotide (NAD+) synthetases catalyze the last step in NAD+ metabolism in the de novo, import, and salvage pathways that originate from tryptophan (or aspartic acid), nicotinic acid, and nicotinamide, respectively, and converge on nicotinic acid mononucleotide. NAD+ synthetase converts nicotinic acid adenine dinucleotide to NAD+ via an adenylylated intermediate. All of the known eukaryotic NAD+ synthetases are glutamine-dependent, hydrolyzing glutamine to glutamic acid to provide the attacking ammonia. In the prokaryotic world, some NAD+ synthetases are glutamine-dependent, whereas others can only use ammonia. Earlier, we noted a perfect correlation between presence of a domain related to nitrilase and glutamine dependence and then proved in the accompanying paper (Bieganowski, P., Pace, H. C., and Brenner, C. (2003) J. Biol. Chem. 278, 33049-33055) that the nitrilase-related domain is an essential, obligate intramolecular, thiol-dependent glutamine amidotransferase in the yeast NAD+ synthetase, Qns1. Independently, human NAD+ synthetase was cloned and shown to depend on Cys-175 for glutamine-dependent but not ammonia-dependent NAD+ synthetase activity. Additionally, it was claimed that a 275 amino acid open reading frame putatively amplified from human glioma cell line LN229 encodes a human ammonia-dependent NAD+ synthetase and this was speculated largely to mediate NAD+ synthesis in human muscle tissues. Here we establish that the so-called NADsyn2 is simply ammonia-dependent NAD+ synthetase from Pseudomonas, which is encoded on an operon with nicotinic acid phosphoribosyltransferase and, in some Pseudomonads, with nicotinamidase.  相似文献   

19.
A previously undescribed nucleoside salvage pathway for NAD biosynthesis is defined in Salmonella typhimurium. Since neither nicotinamide nor nicotinic acid is an intermediate in this pathway, this second pyridine nucleotide salvage pathway is distinct from the classical Preiss-Handler pathway. The evidence indicates that the pathway is from nicotinamide ribonucleoside to nicotinamide mononucleotide (NMN) and then to nicotinic acid mononucleotide, followed by nicotinic acid adenine dinucleotide and NAD. The utilization of exogenous NMN for NAD biosynthesis has been reexamined, and in vivo evidence is provided that the intact NMN molecule traverses the membrane.  相似文献   

20.
The hydrolysis of NAD by rat intestine was studied to determine the subcellular site of this hydrolysis and to identify the niacin-containing products that are formed. Using [nicotinamide-14C]NAD as substrate, and high pressure liquid chromatography for identification and quantification of products, the present study demonstrates two independent reactions for the hydrolysis of NAD; one that forms nicotinamide through hydrolysis of the ribosyl-pyridinium bond and one that forms nicotinamide mononucleotide through the hydrolysis of the pyrophosphate bond. The nicotinamide mononucleotide is subsequently dephosphorylated to nicotinamide riboside. Enzymes which release nicotinamide mononucleotide and nicotinamide riboside are associated with the brush border membrane as determined by analysis of fractionated intestinal homogenates. The enzyme activity which releases nicotinamide from NAD is associated with the brush border membrane fraction and also with a second cellular particulate fraction. Between pH5 and pH6 NAD is hydrolysed principally to nicotinamide. At pH 7.0 rates of nicotinamide and nicotinamide mononucleotide formation are the same. Above pH 7.0 the formation of nicotinamide mononucleotide is preferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号