首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C terminus that recognizes Pol II C-terminal domain (CTD) peptides phosphorylated on Ser2, Ser5, or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3′ ends of genes, where phosphorylated Ser2 reaches its maximum level. In addition, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3′ ends of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation, and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo.  相似文献   

12.
13.
14.
Phospholipase C (PLC)-gamma is unique among the PLC enzymes because each PLC-gamma isozyme contains a split pleckstrin homology (PH) domain with an SH2SH2SH3 tandem repeat insertion (where SH indicates Src homology domain) in the middle of its sequence. Split PH domains exist in a number of other proteins that play crucial signaling roles. However, little is known about the structure and function of split PH domains. The C-terminal half of the PLC-gamma split PH domain has been implicated to interact directly with the TRPC3 calcium channel, thereby providing a direct coupling mechanism between PLC-gamma and agonist-induced calcium entry. However, this interaction has not been proved by direct biochemical or structural studies. Here we determined the three-dimensional structure of the split PH domain of PLC-gamma1, and we found that the split PH domain of the enzyme folds into a canonical PH domain fold with high thermostability. The SH2SH2SH3 insertion between the beta3 and beta4 strands does not change the structure of the split PH domain. In contrast to the majority of phospholipid-binding PH domains, the PLC-gamma1 split PH domain lacks the signature lipid-binding motif located between the beta1 and beta2 strands. Consistent with this structural feature, the split PH domain of PLC-gamma1 does not bind to phospholipids. Multiple biochemical and biophysical experiments have argued against a direct interaction between TRPC3 and the C-terminal half of the PLC-gamma1 split PH domain. Our data pointed to the existence of a yet to be elucidated interaction mechanism between TRPC3 and PLC-gamma1.  相似文献   

15.
Dutta K  Shi H  Cruz-Chu ER  Kami K  Ghose R 《Biochemistry》2004,43(25):8094-8106
An analysis of the backbone dynamics of the C-terminal Src homology 3 (SH3) domain of p67(phox), p67(phox)SH3(C), in complex with a 32-residue high-affinity (K(d) = 24 nM) peptide, Pf, from the C-terminal region of p47(phox) is presented. This paper represents the first detailed analysis of the backbone dynamics and the ligand-induced changes therein of a high-affinity, high-specificity interaction involving an SH3 domain. The dynamic features are compared with those in the high-affinity, highly specific interaction between the SH3 domain of C-terminal Src kinase (Csk-SH3) and a proline-rich peptide from proline-enriched phosphatase (PEP). Both systems share common dynamic features especially in the canonical PxxP motif recognition surface where slow micro- to millisecond time scale dynamics persist on complex formation especially in several residues that are implicated in ligand recognition and in stabilizing the SH3 fold. These residues are highly conserved in SH3 domains. Ile505, which lies outside the PxxP recognition motif on p67(phox)SH3(C) and is key in conferring high specificity to the p67(phox)SH3(C)/Pf interaction, becomes more disordered upon complex formation. This behavior is similar to that seen in the residues that constitute the specificity surface in Csk-SH3.  相似文献   

16.
17.
18.
19.
Syk and ZAP-70 form a subfamily of nonreceptor tyrosine kinases that contain tandem SH2 domains at their N termini. Engagement of these SH2 domains by tyrosine-phosphorylated immunoreceptor tyrosine-based activation motifs leads to kinase activation and downstream signaling. These kinases are also regulated by beta3 integrin-dependent cell adhesion via a phosphorylation-independent interaction with the beta3 integrin cytoplasmic domain. Here, we report that the interaction of integrins with Syk and ZAP-70 depends on the N-terminal SH2 domain and the interdomain A region of the kinase. The N-terminal SH2 domain alone is sufficient for weak binding, and this interaction is independent of tyrosine phosphorylation of the integrin tail. Indeed, phosphorylation of tyrosines within the two conserved NXXY motifs in the integrin beta3 cytoplasmic domain blocks Syk binding. The tandem SH2 domains of these kinases bind to multiple integrin beta cytoplasmic domains with varying affinities (beta3 (Kd = 24 nm) > beta2 (Kd = 38 nm) > beta1 (Kd = 71 nm)) as judged by both affinity chromatography and surface plasmon resonance. Thus, the binding of Syk and ZAP-70 to integrin beta cytoplasmic domains represents a novel phosphotyrosine-independent interaction mediated by their N-terminal SH2 domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号