首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of phytoplankton biomass and primary production were studied during summer 1993 at 16 stations from 65 to 72°N off West Greenland, ranging more than 900 km. Hydrography, nutrients and chlorophyll a profiles revealed a significant change in structure from south to north. Nitrate was depleted in the euphotic zone at most stations except close to the ice edge (West Ice) or close to outflow from large glaciers. The vertical distribution of phosphate followed that of nitrate, but was never depleted. Despite two stations with relatively high surface concentrations, silica showed the same distribution as the other two nutrients. In the south, chlorophyll a concentration and primary production were lower than north of Disko Bay (69°N), associated with a well-mixed versus a salinity-generated stratification, respectively. In Vaigat, a high-production station was identified, (st. 910, 69°52′69N–51°30′61W) with a chlorophyll a concentration in the euphotic zone of >13 μg l−1 and an area primary production of 3.2 g C m−2 day−1. This is seldom encountered in arctic waters and was presumably due to nutrient-rich melt-water originating from the Iluliíssat Glacier. The overall primary production for the studied area was 67–3207 mg C m−2 day−1 (mean ± SD=341± 743 mg C m−2 day−1), which is within the range of the few results published for West Greenland and eastern Canadian Arctic waters. Accepted: 24 October 1998  相似文献   

2.
Bledius (Elbidus) bicornis (Germ.) and B. (Eucerotobledius) furcatus (Oliv.) (Coleoptera: Staphylinidae) are the most important burrowing species in the emergent areas and shores in the athalassic lake of Fuente de Piedra (Málaga, S. of Spain). A first estimate of the importance of these organisms in this system is presented. These insects kick out sediment during their burrowing activity, which accumulates on the surface near the burrows as tumuli which can be easily eroded. The lake perimeter (17 km) is densely colonized (usual densities from 1700 to 2500 ind m−2). The amount of granulated material that can be potentially kicked out was 46.22 g dry wt m−2 day−1. At the same time, the material that constitutes the tumuli shows different characteristics from the compact ground below the surface. Thus, it is relatively enriched with organic matter (6.15 g per square meter), soluble phosphate (406.5 μg m−2) and ammonium (4856 μg m−2), whereas it lacks nitrate. Results of a transect from uninhabited areas to zones of maximum population density also show a similarity between the higher ground level of ammonium and phosphate concentrations and population density.  相似文献   

3.
Chlorophyll a and nutrient concentrations along with temperature and salinity values were measured at 22 CTD stations along a 735-km transect running to the northwest of the island of South Georgia, Southern Ocean. Measurements were repeated during five summer surveys (January and February 1994, January 1996, December 1996, January 1998) and one spring survey (October 1997). The transect sampled Sub-Antarctic Zone water in the north, Polar Frontal Zone water and Antarctic Zone water in the south. Chlorophyll a concentrations were lowest to the north of the transect and frequently high (up to 17 mg m−3) in the deep open ocean of the Antarctic Zone. Sub-surface peaks were measured in all zones and chlorophyll a was detectable to a depth of 150 m. There was a clear latitudinal temperature gradient in the near-surface waters (0–50 m), the warmest water occurring in the north (∼12 °C), and the coolest in the Antarctic Zone (∼2 °C). There was also a well-defined latitudinal gradient in summer near-surface silicate concentrations (∼2, 4, and 10 mmol m−3 in the Sub-Antarctic Zone, the Polar Frontal Zone and the Antarctic Zone, respectively), increasing to >20 mmol m−3 near South Georgia. Distinct differences in silicate concentrations were also evident in all three zones to a depth of 500 m. Near-surface nitrate and phosphate concentrations were relatively low to the north of the transect (∼14 and 1 mmol m−3, respectively) and higher in the Polar Frontal Zone and Antarctic Zone (∼18 and 1.4 mmol m−3, respectively). Ammonium and nitrite were restricted to the upper 200 m of the water column, and exhibited sub-surface concentration peaks, the lowest being in the Sub-Antarctic Zone (0.68 and 0.25 mmol m−3, respectively) and the highest in the Antarctic Zone (1.72 and 0.29 mmol m−3, respectively). Surface (∼6 m) spring nutrient measurements provided an indication of pre-bloom conditions; ammonium and nitrite concentrations were low (∼0.27 and 0.28 mmol m−3, respectively), while silicate, nitrate and phosphate concentrations were high and similar to previously measured winter values (e.g. ∼26, 23, 2 mmol m−3, respectively in the Antarctic Zone). Although the values measured were very variable, and there was some evidence of a seasonal growth progression, the chlorophyll a and nutrient distribution patterns were dominated by intercruise (interannual) factors. Approximate nutrient depletions (spring minus summer) appeared similar in the Polar Frontal Zone and Antarctic Zone for nitrate and phosphate, while silicate showed a marked latitudinal increase from north to south throughout the transect. Highest chlorophyll a concentrations coincided with the highest apparent silicate depletions over the deep ocean of the Antarctic Zone. In this area, relatively warm, easterly flowing Antarctic Circumpolar Current water meets cooler, westerly flowing water that is influenced by the Weddell-Scotia Confluence and is rich in nutrients, especially silicate. Accepted: 27 November 1999  相似文献   

4.
Nutrient-enriched water hyacinths were stocked in outdoor tanks and cultured under both high nutrient (HN) and low nutrient (LN) regimes for 10 months. Seasonal changes in standing crop biomass and morphology of LN water hyacinths were similar to those of HN water hyacinths, despite a ten-fold between-treatment difference in N availability and a two-fold difference in average plant N concentrations (1.0 and 2.0% for LN and HN plants, respectively). Tissue N accumulated by the LN plants prior to stocking helped support standing crop development during the 10 month study. In both HN and LN treatments, the rate of detritus deposition, or the sloughing of dead plant tissues from the mat, was lower than the actual detritus production rate because of the retention of dead ‘aerial’ tissues (laminae and petioles) in the floating mat. The retention of laminae and petioles may serve as a nutrient conservation mechanism, since nutrients released from decomposing tissues in the mat-water environment may be assimilated by adjacent plants. The average rate of detritus deposition (both dry matter and N) by LN water hyacinths (1.2 g dry wt. m−2 day−1 and 0.017 g N m−2 day−1) was lower than that of HN plants (3.0 g dry wt. m−2 day−1 and 0.075 g N m−2 day−1) during the study. Low detrital N losses by the water hyacinth probably enhance the survival of this species in aquatic systems which receive nutrient inputs intermittently.  相似文献   

5.
Using Weddell Sea data collected during a cruise with “FS Polarstern” in austral summer 1992/1993, depletions of nutrients and TCO2 in the summer surface layer were calculated. The analogous depletion-like properties for temperature (Heat Storage) and salinity were also computed. The latter properties are useful to describe the physical conditions over the time period pertinent to the depletions. For different areas a strong correlation exists of Heat Storage and nutrient/TCO2 depletions, which is caused by a common factor – the period of light availability. Offshore of the Larsen shelf, an area usually inaccessible due to perennial ice cover, high nutrients/TCO2 depletions are achieved over a short period of time, pointing to a rapidly producing biological system. Primary productivity, calculated from the TCO2 depletion, amounts to about 100 mg C m−2 day−1 for the central Weddell Sea, but 570–1140 mg C m−2 day−1 for the offshore Larsen region. These values agree fairly well with the open-ocean Antarctic and other coastal areas, respectively. Accepted: 1 August 1999  相似文献   

6.
The Salton Sea currently suffers from several well-documented water quality problems associated with high nutrient loading. However, the importance of phosphorus regeneration from sediments has not been established. Sediment phosphorus regeneration rates may be affected by benthic macroinvertebrate activity (e.g. bioturbation and excretion). The polychaete Neanthes succinea (Frey and Leuckart) is the dominant benthic macroinvertebrate in the Salton Sea. It is widely distributed during periods of mixing (winter and spring), and inhabits only shallow water areas following development of anoxia in summer. The contribution of N. succinea to sediment phosphorus regeneration was investigated using laboratory incubations of cores under lake temperatures and dissolved oxygen concentrations typical of the Salton Sea. Regeneration rates of soluble reactive phosphorus (SRP) were lowest (−0.23–1.03 mg P m−2 day−1) under saturated oxygen conditions, and highest (1.23–4.67 mg P m−2 day−1) under reduced oxygen levels. N. succinea most likely stimulated phosphorus regeneration under reduced oxygen levels via increased burrow ventilation rates. Phosphorus excretion rates by N. succinea were 60–70% more rapid under reduced oxygen levels than under saturated or hypoxic conditions. SRP accounted for 71–80% of the dissolved phosphorus excreted under all conditions. Whole-lake SRP regeneration rates predicted from N. succinea biomass densities are highest in early spring, when the lake is mixing frequently and mid-lake phytoplankton populations are maximal. Thus, any additional phosphorus regenerated from the sediments at that time has potential for contributing to the overall production of the lake. Guest Editor: John M. Melack Saline Water and their Biota  相似文献   

7.
The numbers, biomass, and production of bacterioplankton were determined in the Russian Sector of the Gdansk Basin (Baltic Sea) in 2007–2009. Significant spatial and temporal variations were determined. During the year, bacterial activity increased with increasing water temperature and higher availability of organic substrates. The lowest bacterial production (0.01–31.63 mg C m−3 day−1) was observed in late winter and late autumn, while the highest (0.17–341.70 mg C m−3 day−1) occurred in spring and summer. Since bacterial numbers and biomass were found to depend on the weather conditions and the terrigenous inflow, significant variations were observed from year to year. The highest and lowest numbers and biomass of bacterioplankton determined in summer were 0.09–1.10 × 106 cells mL−1 and 2–22 mg C m−3 for July 2007 and 1.96–11.23 × 106 cells mL−1 and 23–123 mg C m–3 for July 2009. The values of these parameters were the highest along the coast and decreased towards the open sea.  相似文献   

8.
Microalgal lipids are the oils of future for sustainable biodiesel production. However, relatively high production costs due to low lipid productivity have been one of the major obstacles impeding their commercial production. We studied the effects of nitrogen sources and their concentrations on cell growth and lipid accumulation of Neochloris oleoabundans, one of the most promising oil-rich microalgal species. While the highest lipid cell content of 0.40 g/g was obtained at the lowest sodium nitrate concentration (3 mM), a remarkable lipid productivity of 0.133 g l−1 day−1 was achieved at 5 mM with a lipid cell content of 0.34 g/g and a biomass productivity of 0.40 g l−1 day−1. The highest biomass productivity was obtained at 10 mM sodium nitrate, with a biomass concentration of 3.2 g/l and a biomass productivity of 0.63 g l−1 day−1. It was observed that cell growth continued after the exhaustion of external nitrogen pool, hypothetically supported by the consumption of intracellular nitrogen pools such as chlorophyll molecules. The relationship among nitrate depletion, cell growth, lipid cell content, and cell chlorophyll content are discussed.  相似文献   

9.
Membrane-aerated biofilms (MABs) are an effective means to achieve nitrification and denitrification of wastewater. In this research, microsensors, fluorescence in situ hybridization (FISH), and modeling were used to assess the impact of bulk liquid biological oxygen demand (BOD) concentrations on the activity and microbial community structure of nitrifying MABs. With 1 g m−3 BOD in the bulk liquid, the nitrification rate was 1.3 g N m−2 day−1, slightly lower than the 1.5 g N m−2 day−1 reported for no bulk liquid BOD. With bulk liquid BOD concentrations of 3 and 10 g m−3, the rates decreased to 1 and 0.4 g N m−2 day−1, respectively. The percent denitrification increased from 20% to 100% when the BOD increased from 1 to 10 g m−3 BOD. FISH results indicated increasing abundance of heterotrophs with increasing bulk liquid BOD, consistent with the increased denitrification rates. Modeling was used to assess the effect of BOD on nitrification rates and to compare an MAB to a conventional biofilm. The model-predicted nitrification rates were consistent with the experimental results. Also, nitrification in the MAB was much less sensitive to BOD inhibition than the conventional biofilm. The MAB achieved concurrent nitrification and denitrification, whereas little denitrification occurred in the conventional biofilm.  相似文献   

10.
The changes in both physical and chemical properties of interstitial water were investigated within a large gravel bar to determine if the parafluvial zone was a hotspot for nutrient transformations in a lowland eutrophic river, the Doubs (Eastern France). Interstitial water was sampled in 30 piezometers along five transects across the gravel bar, surface water was sampled in main and chute channels. Five campaigns of sampling were performed among summer and winter. In both interstitial and surface samples, water chemistry (electrical conductivity, pH, chloride, dissolved oxygen concentrations—DO) and nutrient concentrations (nitrate—NO3 , ammonium—NH4 +, soluble reactive phosphorus—SRP, dissolved organic carbon—DOC) were measured. Moreover, temperature, water level, sediment grain size distribution and total bacterial abundance were assessed along a flowpath through a lateral gravel bar of the Doubs River. Measurements of water table elevation in the bar, main and chute channels indicated that the parafluvial flowpath was perpendicular to the main channel. Very low changes in chloride concentration and electrical conductivity showed minor groundwater input along the flowpath. The parafluvial zone was 0.9 m thick under the mean piezometric level, hydraulic gradients along the flowpath were 0.3%, and the discharge of interstitial water through the bar calculated at low flow was 40.6 m3 day−1. Most changes in interstitial nutrients occurred during the warm season, suggesting that biotic mechanisms occurred. Along the flowpath, DO, DOC, and bacterial abundance declined, while phosphate increased. Temporal trends of nitrate were less clear, exhibiting a slight increase during spring (organic matter biodegradation) and a decrease during summer (denitrification). Using the parafluvial discharge and nutrient concentrations of water infiltrating into and seeping from the gravel bar, the retention capacity of the bar was 171 gC day−1 for DOC and 48.3 gN day−1 for nitrate. Phosphate production ranged from 0.65 to 2.3 gP day−1. These values were low compared to the nutrient fluxes in the river Doubs, suggesting a minimal local impact of the parafluvial zone in regulating of river pollution. Handling editor: J. Padisak  相似文献   

11.
We examined the hydrologic controls on nitrogen biogeochemistry in the hyporheic zone of the Tanana River, a glacially-fed river, in interior Alaska. We measured hyporheic solute concentrations, gas partial pressures, water table height, and flow rates along subsurface flowpaths on two islands for three summers. Denitrification was quantified using an in situ 15NO3 push–pull technique. Hyporheic water level responded rapidly to change in river stage, with the sites flooding periodically in mid−July to early−August. Nitrate concentration was nearly 3-fold greater in river (ca. 100 μg NO3–N l−1) than hyporheic water (ca. 38 μg NO3–N l−1), but approximately 60–80% of river nitrate was removed during the first 50 m of hyporheic flowpath. Denitrification during high river stage ranged from 1.9 to 29.4 mg N kg sediment−1 day−1. Hotspots of methane partial pressure, averaging 50,000 ppmv, occurred in densely vegetated sites in conjunction with mean oxygen concentration below 0.5 mgOl−1. Hyporheic flow was an important mechanism of nitrogen supply to microbes and plant roots, transporting on average 0.41 gNO3–N m−2 day−1, 0.22 g NH4+–N m−2 day−1, and 3.6 g DON m−2 day−1 through surface sediment (top 2 m). Our results suggest that denitrification can be a major sink for river nitrate in boreal forest floodplain soils, particularly at the river-sediment interface. The stability of the river hydrograph and the resulting duration of soil saturation are key factors regulating the redox environment and anaerobic metabolism in the hyporheic zone.  相似文献   

12.
In order to determine the seasonal growth and biomass ofTrapa japonica Flerov, field observations were carried out at Ojaga-ike Pond, Chiba, Japan, during 1979 and 1980. In spring, the plant showed exponential growth (c. 0.080 g g−1 day−1) and shoot elongation was as rapid as 10 cm day−1. The plant attained its maximum biomass (380.5±35.1 g m−2) in late August, and about 50% of this was concentrated in the topmost 30-cm stratum (645.7±33.1 g m−3); maximum total stem length exceeded 6m. The plant produced large (500–800 mg per fruit), but small numbers of nut-like fruit (maximum, 5 fruits per rosette). Defoliation occurred almost linearly with time at a rate of 30.6 leaves m−2 day−1; annual net leaf production was estimated to be about twice as large as the seasonal maximum leaf biomass. While the number of leaves per rosette showed moderate seasonal change, rosette density, rosette area and leaf dry weight changed considerably during the year. From the negative log-log correlation between mean total leaf dry weight per rosette and rosette density, density-dependent rosette growth was assumed. The cause of the wide spread of this species in aquatic habitats is briefly discussed in terms of its seed size and morphology.  相似文献   

13.
Leader dieback associated with B deficiency in P. radiata D. Don plantations was treated with borax applied at rates of 50, 100 and 150 kg ha−1. This initially increased B in foliage from 5 to 40, 80 and 110 μg g−1 respectively, and was followed by a rapid decline and stabilisation at around 25 μg g−1 for the duration of the study. Annual fluctuations in foliage B levels were strongly correlated with rainfall during the preceding spring and summer. Uptake of N, P and K increased as a result of applied B and comparison of the distribution of these nutrients in crowns of fertilized and unfertilised trees six years after application indicated continued uptake of these nutrients probably as a result of improved root growth due to B. Foliage concentrations of B like N, P and K, increased in young needles towards the upper crown and this, together with a decline in needle concentrations of B as foliage aged, indicated some redistribution of B from older to new foliage. A limit of 5 μg g−1 was found below which little redistribution seems to occur. Application of B prevented further leader dieback, improved apical dominance and height growth and increased volume production by 25 m3 ha−1 at age 8 years. Differences between application rates of B were not significant in terms of growth.  相似文献   

14.
Seasonal dynamics in the activity of Arctic shelf benthos have been the subject of few local studies, and the pronounced among-site variability characterizing their results makes it difficult to upscale and generalize their conclusions. In a regional study encompassing five sites at 100–595 m water depth in the southeastern Beaufort Sea, we found that total pigment concentrations in surficial sediments, used as proxies of general food supply to the benthos, rose significantly after the transition from ice-covered conditions in spring (March–June 2008) to open-water conditions in summer (June–August 2008), whereas sediment Chl a concentrations, typical markers of fresh food input, did not. Macrobenthic biomass (including agglutinated foraminifera >500 μm) varied significantly among sites (1.2–6.4 g C m−2 in spring, 1.1–12.6 g C m−2 in summer), whereas a general spring-to-summer increase was not detected. Benthic carbon remineralisation also ranged significantly among sites (11.9–33.2 mg C m−2 day−1 in spring, 11.6–44.4 mg C m−2 day−1 in summer) and did in addition exhibit a general significant increase from spring-to-summer. Multiple regression analysis suggests that in both spring and summer, sediment Chl a concentration is the prime determinant of benthic carbon remineralisation, but other factors have a significant secondary influence, such as foraminiferan biomass (negative in both seasons), water depth (in spring) and infaunal biomass (in summer). Our findings indicate the importance of the combined and dynamic effects of food supply and benthic community patterns on the carbon remineralisation of the polar shelf benthos in seasonally ice-covered seas.  相似文献   

15.
Breakdown and nutrient dynamics of submerged macrophytes were studied in Myall Lake, Australia. Mass loss of Myriophyllum sulsagineum was the lowest (64.90%) among the studied macrophytes during the 322 days followed by charophytes (60.79%), whereas Najas marina and Vallisneria gigantea lost 91.15 and 86.02% of their respective initial mass during that time. The overall exponential breakdown rates of Najas marina and Vallisneria gigantea were similar, with k-values of 0.24 and 0.23 day−1, respectively. These rates were significantly higher than the break down rates of charophytes (0.007 day−1) and M. sulsagineum (0.008 day−1). During growth phase, water column depicted lower nutrient concentrations while during decay period, significant increase in water column nutrients resulted. Release of nutrients from decomposing macrophytes and incorporation of these nutrients into sedimentary phase as well as uptake of nutrients by the growing macrophytes, can present a considerable cycling pathway of nutrients in Myall lake system. The results of this study suggest that different submerged macrophytes may differ appreciably in quality and may exhibit different decomposition rates, patterns and nutrient dynamics in aquatic ecosystems in general, and Myall lakes in particular.  相似文献   

16.
Phytoplankton diversity, primary productivity and community metabolism were measured for 1 year in a 0.94 ha pond located in north-central Texas. Gross primary production ranged from 4.5 to 46.8 kcal m−2 day−1 ( =22.0 kcal m−2 day−1) and community metabolism ranged from 7.3 to 32.4 kcal m−2 day−1 ( =14.8 kcal m−2 day−1). Average production/respiration ratio (1.5) showed that the pond was principally autotrophic. Photosynthetic efficiency (gross primary production/0.5 total solar radiation) ranged from 0.32 to 2.8 with a mean of 1.2. Phytoplankton diversity based on numbers and biomass fluctuated greatly. Highest gross primary productivity occurred during Cyanophyta blooms in late summer-early fall when species diversity was minimal. Water temperature and turbidity, which governed light penetration, were the principal determinants of primary production.  相似文献   

17.
The rates of photosynthesis and dark CO2 fixation were determined in 12 soda lakes of the Kulunda steppe. Characterization of the phototrophic communities was given, and the cell numbers of anoxygenic phototrophic bacteria (APB) were determined. The photosynthetic production in different lakes was substantially different, constituting from 0.01 to 1.32 g C m−2 day−1. The main part of carbon dioxide was assimilated in the process of oxygenic photosynthesis. Anoxygenic photosynthesis was recorded only in 5 of the 12 lakes studied. Its values varied between 0.06 and 0.42 g C m−2 day−1, constituting from 8 to 34% of the total photosynthetic activity. Anoxygenic photosynthesis was revealed in the lakes where the number of APB reached 107–109 CFU cm−3. Dark CO2 fixation constituted 0.01–0.15 g C m−2 day−1. Positive correlation was observed between the primary production value and water alkalinity. No relationship between productivity and water mineralization was revealed in the 30–200 g l−1 range, whereas an increase in salinity above 200 g l−1 suppressed the photosynthetic activity. The mechanisms of influence of the environmental factors on the rate of photosynthesis are discussed.  相似文献   

18.
We compared on eight dates during the ice-free period physicochemical properties and rates of phytoplankton and epipelic primary production in six arctic lakes dominated by soft bottom substrate. Lakes were classified as shallow ( < 2.5 m), intermediate in depth (2.5 m <  < 4.5 m), and deep ( > 4.5 m), with each depth category represented by two lakes. Although shallow lakes circulated freely and intermediate and deep lakes stratified thermally for the entire summer, dissolved oxygen concentrations were always >70% of saturation values. Soluble reactive phosphorus and dissolved inorganic nitrogen (DIN = NO3 –N + NH4 +–N) were consistently below the detection limit (0.05 μmol l−1) in five lakes. However, one lake shallow lake (GTH 99) periodically showed elevated values of DIN (17 μmol l−1), total-P (0.29 μmol l−1), and total-N (33 μmol l−1), suggesting wind-generated sediment resuspension. Due to increased nutrient availability or entrainment of microphytobenthos, GTH 99 showed the highest average volume-based values of phytoplankton chlorophyll a (chl a) and primary production, which for the six lakes ranged from 1.0 to 2.9 μg l−1 and 0.7–3.8 μmol C l−1 day−1. Overall, however, increased resulted in increased area-based values of phytoplankton chl a and primary production, with mean values for the three lake classes ranging from 3.6 to 6.1 mg chl a m−2 and 3.2–5.8 mmol C m−2 day−1. Average values of epipelic chl a ranged from 131 to 549 mg m−2 for the three depth classes, but levels were not significantly different due to high spatial variability. However, average epipelic primary production was significantly higher in shallow lakes (12.2 mmol C m−2 day−1) than in intermediate and deep lakes (3.4 and 2.4 mmol C m−2 day−1). Total primary production (6.7–15.4 mmol C m−2 day−1) and percent contribution of the epipelon (31–66%) were inversely related to mean depth, such that values for both variables were significantly higher in shallow lakes than in intermediate or deep lakes. Handling editor: L. Naselli-Flores  相似文献   

19.
The nutrient (P and N species) and chloride budgets were investigated in a representative floodplain in the seasonal wetlands of the Okavango Delta, Botswana. A variety of sources of nutrients in the surface water were considered, namely ion species coming with the floodwater, those generated from dry floodplain soils and those from water-soluble dust deposition (both local and long-range sources). Concentrations of total-nitrogen and chloride in surface water were below 1 mg l−1. Total-phosphorus concentrations were 0.05 mg l−1, reflecting the oligotrophic character of the system. Dust deposition rates were highest for chloride at 2.44 g m−2 year−1 followed by 0.79 g m−2 year−1 for total-N, 0.40 g m−2 year−1 for ammonia and only 0.02 g m−2 year−1 for total-P, respectively. Chloride was derived primarily from long-range transport, while N and P species were of more local origin. Dissolution rates for these ions combined were calculated to be 3.9 g m−2 for the flooded area in the 1999 season and thus all dry deposits must be re-dissolved. The accumulation of dust deposits on dry surfaces and their subsequent dissolution causes 2–5 times higher concentrations of nitrogen, phosphorus and chloride with the onset of the flood, thus boosting the nutrient stock in the crucial phase of the onset of flooding. Chloride dissolved from dry soil surfaces and dust contributed approximately 40% to the overall floodplain budget. Although contributions from the soil surface and dust to the nitrogen and phosphorus pools of the floodplain are less prominent (with 10% of total), they nonetheless represent a significant source of nutrients in the entire system. Extrapolation to annually flooded swamps (10,000 km2) indicates a maximum contribution of 40% for total-nitrogen and 60% for total-phosphorus from dust deposition on wet or dry surfaces to the nutrient pool of the water body.  相似文献   

20.
Abstract Seasonal variation in bacterioplankton abundance, biomass, and bacterioplankton production was studied over eight years in hypertrophic Lake S?byg?rd. Biologically, the lake is highly variable; this is due mainly to large interannual variation in fish recruitment. Bacterioplankton production was low during winter, typically 1–3 × 107 cells l−1 h−1, and high during summer, albeit greatly fluctuating with maximum rates typically ranging from 60 to 90 × 107 cells l−1 h−1 (or 0.4 to 0.6 mg C l−1 day−1). Less pronounced variations were found in bacterioplankton abundance, which typically ranged from 3–8 × 109 cells l−1 in winter to 15–30 × 109 cells l−1 during summer. The specific growth rate of bacterioplankton varied from 0.02–0.2 d−1 in winter to 0.5–2.3 day−1 during summer. Interpolated mean bacterioplankton production, in terms of carbon, ranged from 0.08 to 0.16 mg C l−1 day−1, corresponding to 1.6–5.5% of the phytoplankton production, while biomass ranged from 0.28 to 0.36 mg C l−1, corresponding to 1.9–4.6% of the phytoplankton biomass. We conducted regression analysis, relating the bacterioplankton variables to a number of environmental variables, and evaluated the interannual parameter variability. Chlorophyll a and phytoplankton production contributed less to the variation in the bacterioplankton variables than in most previous analyses using data from less eutrophic systems. We suggest that the proportion of phytoplankton production that is channelized through bacterioplankton in lakes decreases with increasing trophic state and decreasing mean depth. This probably reflects a concurrent increase in fish predation on macrozooplankton and loss by sedimentation. An important part of the residual variation in the equations hitherto proposed in the literature could be explained by variation in macrozooplankton biomass and pH > 10.2. A negative effect of high pH on bacterioplankton production was confirmed by laboratory experiments. The impact of different zooplankton varies considerably, with Daphnia seeming to have a negative impact on bacterioplankton abundance and, thereby, indirectly on bacterioplankton production, while Bosmina, rotifers, and cyclopoid copepods seem to stimulate both abundance and production. Bosmina apparently also stimulate the bacterioplankton specific growth rate. Received: 8 February 1996; Accepted: 16 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号