首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytochrome bo quinol oxidase of Escherichia coli is one of two respiratory O2 reductases which the bacterium synthesizes. The enzyme complex contains copper and 2 mol of b-type heme. Electron paramagnetic resonance (epr) spectroscopy of membranes from a strain having amplified levels of this enzyme complex reveals signals from low- and high-spin b-type hemes, but the copper, now established as a component of the oxidase, is not directly detectable by epr. The high-spin signal from the cytochrome bo complex, which we attribute to cytochrome o, when titrated potentiometrically, gives a bell-shaped curve. The low potential side of this curve is biphasic (Em7 approximately 180 and 280 mV) and corresponds to the reduction/oxidation of the cytochrome(s). The high potential side of the bell-shaped curve is monophasic (Em7 approximately 370 mV) and is proposed to be due to reduction/oxidation of a copper center which, when in the Cu(II) form, is tightly spin-coupled to a heme, probably cytochrome o, resulting in a net even spin system and loss of the epr spectrum. The low-spin cytochrome b titrates biphasically with Em7 values of approximately 180 and 280 mV, similar to the high-spin component but without the loss of signal at high potentials.  相似文献   

2.
Submitochondrial particles isolated from Tetrahymena pyriformis contain essentially the same redox carriers as those present in parental mitochondria: at pH 7.2 and 22 degree C there are two b-type pigments with half-reduction potentials of --0.04 and --0.17 V, a c-type cytochrome with a half reduction potential of 0.215 V, and a two-component cytochrome a2 with Em7.2 of 0.245 and 0.345 V. EPR spectra of the aerobic submitochondrial particles in the absence of substrate show the presence of low spine ferric hemes with g values at 3.4 and 3.0, a high spin ferric heme with g =6, and a g=2.0 signal characteristic of oxidized copper. In the reduced submitochondrial particles signals of various iron-sulfur centers are observed. Cytochrome c553 is lost from mitochondria during preparation of the submitochondrial particles. The partially purified cytochrome c553 is a negatively charged protein at neutral pH with an Em7.2 of 0.25 V which binds to the cytochrome c-depleted Tetrahymena mitochondria in the amount of 0.5 nmol/mg protein with KD of 0.8.10(-6) M. Reduced cytochrome c553 serves as an efficient substrate in the reaction with its own oxidase. The EPR spectrum of the partially purified cytochrome c553 shows the presence of a low spin ferric heme with the dominant resonance signal at g=3.28. A pigment with an alpha absorption maximum at 560 nm can be solubilized from the Tetrahymena cells with butanol. This pigments has a molecular weight of approx. 18 000, and Em7.2 of--0.17 V and exhibits a high spin ferric heme signal at g=6.  相似文献   

3.
Succinate:menaquinone-7 oxidoreductase (complex II) of the Gram-positive bacterium Bacillus subtilis consists of equimolar amounts of three polypeptides; a 65-kDa FAD-containing polypeptide, a 28-kDa iron-sulfur cluster containing polypeptide, and a 23-kDa membrane-spanning cytochrome b558 polypeptide. The enzyme complex was overproduced 2-3-fold in membranes of B. subtilis cells containing the sdhCAB operon on a low copy number plasmid and was purified in the presence of detergent. The cytochrome b558 subunit alone was similarly overexpressed in a complex II deficient mutant and partially purified. Isolated complex II catalyzed the reduction of various quinones and also quinol oxidation. Both activities were efficiently albeit not completely blocked by 2-n-heptyl-4-hydroxyquinoline N-oxide. Chemical analysis demonstrated two protoheme IX per complex II. One heme component was found to have an Em,7.4 of +65 mV and an EPR gmax signal at 3.68, to be fully reducible by succinate, and showed a symmetrical alpha-band absorption peak at 555 nm at 77 K. The other heme component was found to have an Em,7.4 of -95 mV and an EPR gmax signal at 3.42, was not reducible by succinate under steady-state conditions, and showed in the reduced state an apparent split alpha-band absorption peak with maxima at 553 and 558 nm at 77 K. Potentiometric titrations of partially purified cytochrome b558 subunit demonstrated that the isolated cytochrome b558 also contains two hemes. Some of the properties, i.e., the alpha-band light absorption peak at 77 K, the line shapes of the EPR gmax signals, and reactivity with carbon monoxide were observed to be different in B. subtilis cytochrome b558 isolated and in complex II. This suggests that the bound flavoprotein and iron-sulfur protein subunits protect or affect the heme environment in the assembled complex.  相似文献   

4.
The cytochrome o complex of Escherichia coli is a ubiquinol oxidase which is the predominant respiratory terminal oxidase when the bacteria are grown under high oxygen tension. The amino acid sequences of three of the subunits of this quinol oxidase reveal a substantial relationship to the aa3-type cytochrome c oxidases. The two cytochrome components (b563.5 and o) and the single copper (CuB) present in the E. coli quinol oxidase appear to be equivalent to cytochrome a, cytochrome a3, and CuB of the aa3-type cytochrome c oxidases, respectively. These three prosthetic groups are all located within subunit I of the oxidase. Sequence alignments indicate only six totally conserved histidine residues among all known sequences of subunit I of the cytochrome c oxidases of various species plus the E. coli quinol oxidase. Site-directed mutagenesis has been used to change each of these totally conserved histidines with the presumption that two of these six must ligate to the low spin cytochrome center of the E. coli oxidase. The presence of the low spin cytochrome b563.5 component of the oxidase can be evaluated both by visible absorbance properties and by its EPR spectrum. The results unambiguously indicate that His-106 and His-421 are the ligands of the six-coordinate low spin cytochrome b563.5. Although the data are not definitive in making additional metal ligation assignments of the remaining four totally conserved histidines, a reasonable model is suggested for the structure of the catalytic core of the cytochrome o complex and, by extrapolation, of cytochrome c oxidase.  相似文献   

5.
The aerobic respiratory system of Bacillus subtilis 168 is known to contain three terminal oxidases: cytochrome caa(3), which is a cytochrome c oxidase, and cytochrome aa(3) and bd, which are quinol oxidases. The presence of a possible fourth oxidase in the bacterium was investigated using a constructed mutant, LUH27, that lacks the aa(3) and caa(3) terminal oxidases and is also deficient in succinate:menaquinone oxidoreductase. The cytochrome bd content of LUH27 can be varied by using different growth conditions. LUH27 membranes virtually devoid of cytochrome bd respired with NADH or exogenous quinol as actively as preparations containing 0.4 nmol of cytochrome bd/mg of protein but were more sensitive to cyanide and aurachin D. The reduced minus oxidized difference spectra of the bd-deficient membranes as well as absorption changes induced by CO and cyanide indicated the presence of a "cytochrome o"-like component; however, the membranes did not contain heme O. The results provide strong evidence for the presence of a terminal oxidase of the bb' type in B. subtilis. The enzyme does not pump protons and combines with CO much faster than typical heme-copper oxidases; in these respects, it resembles a cytochrome bd rather than members of the heme-copper oxidase superfamily. The genome sequence of B. subtilis 168 contains gene clusters for four respiratory oxidases. Two of these clusters, cta and qox, are deleted in LUH27. The remaining two, cydAB and ythAB, encode the identified cytochrome bd and a putative second cytochrome bd, respectively. Deletion of ythAB in strain LUH27 or the presence of the yth genes on plasmid did not affect the expression of the bb' oxidase. It is concluded that the novel bb'-type oxidase probably is cytochrome bd encoded by the cyd locus but with heme D being substituted by high spin heme B at the oxygen reactive site, i.e. cytochrome b(558)b(595)b'.  相似文献   

6.
In order to identify the b-type cytochrome involved in the nitrate reduction in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans, the b-type cytochromes in the spheroplast membranes were characterized. Difference spectra at 77K of spheroplast membranes indicated the presence of two b-type cytochromes with a bands at 556.5 and 562 nm. Three components considered to be of the b-type cytochrome were resolved by anaerobic potentiometric titration at 560-572 nm. Their midpoint potentials at pH 7, Em,7, were - 135 mV, +40 mV and +175 nm and their approximate reduced minus oxidized maxima were determined to be at 565 nm (562 nm at 77K), 560 nm (556.5 nm) and 560 nm (556.5 nm), respectively. These values are almost the same as those reported for R. sphaeroides. The Em,7 value of the cytochrome c involved in the nitrate reductase of this denitrifier was determined to be 250 mV. A b-type cytochrome reduced with NADH and FMN was oxidized by nitrate in chromatophore membranes. The possibility that cytochrome b (Em,7 = 175 mV) is involved in the nitrate reduction is discussed.  相似文献   

7.
Flash-induced redox changes of b-type and c-type cytochromes have been studied in chromatophores from the aerobic photosynthetic bacterium Roseobacter denitrificans under redox-controlled conditions. The flash-oxidized primary donor P+ of the reaction center (RC) is rapidly re-reduced by heme H1 (Em,7 = 290 mV), heme H2 (Em,7 = 240 mV) or low-potential hemes L1/L2 (Em,7 = 90 mV) of the RC-bound tetraheme, depending on their redox state before photoexcitation. By titrating the extent of flash-induced low-potential heme oxidation, a midpoint potential equal to -50 mV has been determined for the primary quinone acceptor QA. Only the photo-oxidized heme H2 is re-reduced in tens of milliseconds, in a reaction sensitive to inhibitors of the bc1 complex, leading to the concomitant oxidation of a cytochrome c spectrally distinct from the RC-bound hemes. This reaction involves cytochrome c551 in a diffusional process. Participation of the bc1 complex in a cyclic electron transfer chain has been demonstrated by detection of flash-induced reduction of cytochrome b561, stimulated by antimycin and inhibited by myxothiazol. Cytochrome b561, reduced upon flash excitation, is re-oxidized slowly even in the absence of antimycin. The rate of reduction of cytochrome b561 in the presence of antimycin increases upon lowering the ambient redox potential, most likely reflecting the progressive prereduction of the ubiquinone pool. Chromatophores contain approximately 20 ubiquinone-10 molecules per RC. At the optimal redox poise, approximately 0.3 cytochrome b molecules per RC are reduced following flash excitation. Cytochrome b reduction titrates out at Eh < 100 mV, when low-potential heme(s) rapidly re-reduce P+ preventing cyclic electron transfer. Results can be rationalized in the framework of a Q-cycle-type model.  相似文献   

8.
A combination of potentiometric analysis and electrochemically poised low-temperature difference spectroscopy was used to examine a mutant strain of Escherichia coli that was previously shown by immunological criteria to be lacking the cytochrome d terminal oxidase. It was shown that this strain is missing cytochromes d, a1, and b558 and that the cytochrome composition of the mutant is similar to that of the wild-type strain grown under conditions of high aeration. The data indicate that the high-aeration branch of the respiratory chain contains two cytochrome components, b556 (midpoint potential [Em] = +35 mV) and cytochrome o (Em = +165 mV). The latter component binds to CO and apparently has a reduced-minus-oxidized split-alpha band with peaks at 555 and 562 nm. When the wild-type strain was grown under conditions of low aeration, the components of the cytochrome d terminal oxidase complex were observed: cytochrome d (Em = +260 mV), cytochrome a1 (Em = +150 mV) and cytochrome b558 (Em = +180 mV). All cytochromes appeared to undergo simple one-electron oxidation-reduction reactions. In the absence of CO, cytochromes b558 and o have nearly the same Em values. In the presence of CO, the Em of cytochrome o is raised, thus allowing cytochromes b558 and o to be individually quantitated by potentiometric analysis when they are both present.  相似文献   

9.
The redox properties, the site of action of the inhibitor NQNO, and the question of interheme transfer in the chloroplast cytochrome b6 have been examined with regard to the role of the b6-f complex in quinol oxidation and H+ translocation. (i) The two hemes of the cytochrome ba and bp, have similar (delta Em less than or equal to 50 mV) oxidation-reduction midpoint potentials that are pH-independent in the range pH 6.5-8.0 (Em7 = -40 mV) but are pH dependent below this range with an estimated pK = 6.7. (ii) Only half of cytochrome b6, the stromal-side heme, ba, was reducible by NADPH and ferredoxin. (iii) The 2-3-fold increase (to 0.60 +/- 0.09 heme/600 Chl) in the amplitude of flash-induced cytochrome reduction caused by NQNO was not affected when heme ba was initially reduced, implying that NQNO affects flash reduction at the site of heme bp. (iv) Multiple light flashes did not increase the amplitude of b6 reduction in the presence or absence of NQNO or show binary oscillations. Together with localization of a site of action of NQNO near heme bp, these data provide no evidence for efficient electron transfer from heme bp to heme ba as specified by the Q cycle model. (v) NQNO interaction with heme bp does not block its oxidation, since reoxidation of the flash-reduced cytochrome in its presence or absence was 4-5 times faster (t1/2 approximately 30 ms) when heme ba was reduced. The faster oxidation of the photoreduced cytochrome after NADPH-Fd reduction of heme ba indicates that the oxidation of ba and bp may be cooperative.  相似文献   

10.
The cytochrome bo quinol oxidase of Escherichia coli is homologous in sequence and in structure to cytochrome aa3 type cytochrome oxidase in subunit I, which contains the catalytic core. The cytochrome bo enzyme forms a formate complex which exhibits 'g = 12' and 'g = 2.9' EPR signals at X band; similar signals have previously been observed only in association with the 'slow' and formate-ligand states of cytochrome oxidase. These signals arise from transitions within integral spin multiples identified with the homologous heme-copper binuclear catalytic centers in both enzymes.  相似文献   

11.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPT-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy. 2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (less than 50 ms) approx. 0.5 electron equivalent per heme a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (less than 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a. 3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates. 4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms., whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO. 5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C.R., Hansen, R.E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477-2481). Both the low-spin (g=o; 2.2; 1.5) and slowly appearing high-spin (g=6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undectectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   

12.
Recent electrostatics calculations on the cytochrome c oxidase from Paracoccus denitrificans revealed an unexpected coupling between the redox state of the heme-copper center and the state of protonation of a glutamic acid (E78II) that is 25 A away in subunit II of the oxidase. Examination of more than 300 sequences of the homologous subunit in other heme-copper oxidases shows that this residue is virtually totally conserved and is in a cluster of very highly conserved residues at the "negative" end (bacterial cytoplasm or mitochondrial matrix) of the second transmembrane helix. The functional importance of several residues in this cluster (E89II, W93II, T94II, and P96II) was examined by site-directed mutagenesis of the corresponding region of the cytochrome bo(3) quinol oxidase from Escherichia coli (where E89II is the equivalent of residue E78II of the P. denitrificans oxidase). Substitution of E89II with either alanine or glutamine resulted in reducing the rate of turnover to about 43 or 10% of the wild-type value, respectively, whereas E89D has only about 60% of the activity of the control oxidase. The quinol oxidase activity of the W93V mutant is also reduced to about 30% of that of the wild-type oxidase. Spectroscopic studies with the purified E89A and E89Q mutants indicate no perturbation of the heme-copper center. The data suggest that E89II (E. coli numbering) is critical for the function of the heme copper oxidases. The proximity to K362 suggests that this glutamic acid residue may regulate proton entry or transit through the K-channel. This hypothesis is supported by the finding that the degree of oxidation of the low-spin heme b is greater in the steady state using hydrogen peroxide as an oxidant in place of dioxygen for the E89Q mutant. Thus, it appears that the inhibition resulting from the E89II mutation is due to a block in the reduction of the heme-copper binuclear center, expected for K-channel mutants.  相似文献   

13.
The mechanism of the dioxygen (O(2)) reduction conducted by cytochrome bo-type quinol oxidase was investigated using submillisecond-resolved freeze-quench EPR spectroscopy. The fully reduced form of the wild-type enzyme (WT) with the bound ubiquinone-8 at the high-affinity quinone-binding site was mixed with an O(2)-saturated solution, and the subsequent reaction was quenched at different time intervals from 0.2 to 50 ms. The EPR signals derived from the binuclear center and heme b were weak in the time domain from 0.2 to 0.5 ms. The signals derived from the ferric heme b and hydroxide-bound ferric heme o increased simultaneously after 1 ms, indicating that the oxidation of heme b is coupled to the formation of hydroxy heme o. In contrast, the enzyme without the bound ubiquinone-8 (Delta UbiA) showed the faster oxidation of heme b and the slower formation of hydroxy heme o than WT. It is interpreted that the F(I) intermediate possessing ferryl-oxo heme o, cupric Cu(B), and ferric heme b is converted to the F(II) intermediate within 0.2 ms by an electron transfer from the bound ubiquinonol-8 to ferric heme b. The conversion of the F(II) intermediate to the hydroxy intermediate occurred after 1 ms and was accompanied by the one-electron transfer from heme b to the binuclear center. Finally, it is suggested that the hydroxy intermediate possesses no bridging ligand between heme o and Cu(B) and is the final intermediate in the turnover cycle of cytochrome bo under steady-state conditions.  相似文献   

14.
The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b(558) that donates electrons to a binuclear heme b(595)/heme d center. The reaction with O(2) and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O(2), the O-O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b(595). Compound I accumulates to 0.75-0.85 per enzyme in agreement with its much higher rate of formation (~20,000 s(-1)) compared with its rate of decay (~1,900 s(-1)). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b(558) before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O-O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O-O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species.  相似文献   

15.
Membrane fragments isolated from the aerobic phototrophic bacterium Roseobacter denitrificans were examined. Ninety-five percent of the total NADH-dependent oxidative activity was inhibited either by antimycin A or myxothiazol, two specific inhibitors of the cytochrome bc1 complex, which indicates that the respiratory electron transport chain is linear. In agreement with this finding, light-induced oxygen uptake, an electron transport activity catalyzed by the "alternative quinol oxidase pathway" in membranes of several facultative phototrophic species, was barely detectable in membranes of Rsb. denitrificans. Redox titrations at 561-575 nm, 552-540 nm, and 602-630 nm indicated the presence of three b-type cytochromes (Em,7 of +244 +/- 8, +24 +/- 3, -163 +/- 11 mV), four c-type cytochromes (Em,7 of +280 +/- 10, +210 +/- 5, +125 +/- 8, and 20 +/- 3 mV) and two a-type cytochromes (Em,7 of +335 +/- 15, +218 +/- 18 mV). The latter two a-type hemes were shown to be involved in cytochrome c oxidase activity, which was inhibited by both cyanide (I50 = 2 microM) and azide (I50 = 1 mM), while a soluble cytochrome c (c551, Em,7 = +217 +/- 2 mV) was shown to be the physiological electron carrier connecting the bc1 complex to the cytochrome c oxidase. A comparison of the ATP synthesis generated by continuous light in membranes of Rsb. denitrificans and Rhodobacter capsulatus showed that in both bacterial species photophosphorylation requires a membrane redox poise at the equilibrium (Eh > or = +80 < or = +140 mV), close to the oxidation-reduction potential of the ubiquinone pool. These data, taken together, suggest that, although the photosynthetic apparatus of Rsb. denitrificans is functionally similar to that of typical anoxygenic phototrophs, e.g. Rba. capsulatus, the in vivo requirement of a suitable redox state at the ubiquinone pool level restricts the growth capacity of Rsb. denitrificans to oxic conditions.  相似文献   

16.
Spectral and potentiometric analysis of cytochromes from Bacillus subtilis   总被引:4,自引:0,他引:4  
Bacillus subtilis cytoplasmic membranes contain several cytochromes which are linked to the respiratory chain. At least six different cytochromes have been separated and identified by ammonium sulphate fractionation and ion-exchange chromatography. They include two terminal oxidases with CO-binding properties and cyanide sensitivity. One of these is an aa3-type cytochrome c oxidase which has characteristic absorption maxima in the reduced-oxidized difference spectrum at 601 nm in the alpha-band and at 443 nm in the Soret band regions. In the alpha-band two separate electron transitions with Em = +205 mV and Em = +335 mV can be discriminated by redox potentiometric titration. The other CO-binding cytochrome c oxidase contains two cytochrome b components with alpha-band maxima at 556 nm and 559 nm. Cytochrome b556 can be reduced by ascorbate and has an Em + +215 mV, whereas cytochrome b559 has an Em = +140 mV. Furthermore a complex consisting of a cytochrome b564 (Em = +140 mV) associated with a cytochrome c554 (Em = +250 mV) was found. This cytochrome c554, which can be reduced by ascorbate, appears to have an asymmetrical alpha-peak and stains for heme-catalyzed peroxidase activity on SDS-containing polyacrylamide gels. A protein with a molecular mass of about 30 kDa is responsible for this activity. A cytochrome b559 (Em = +65 mV) appears to be an essential part of succinate dehydrogenase. Finally a cytochrome c550 component with an apparent mid-point potential of Em = +195 mV has been detected.  相似文献   

17.
Optical changes in d- and b-type cytochromes, following initiation of the reaction of cytochrome oxidase d with O2, have been studied in cells and derived membrane particles from oxygen-limited cultures of Escherichia coli K12. At successively higher temperatures between -132 and -88 degrees C, the first scan after photolysis of the Co-liganded, reduced oxidase in the presence of O2 and a slow increase in absorbance at 675 to 680 nm due to an unidentified chromophore. A similar sequence occurs when a single sample is scanned repetitively at -91 degrees C. At higher temperatures, oxidation of at least two spectrally distinct cytochromes b occurs. Selective photolysis of the cytochrome d-CO complex with a He-Ne laser shows that neither of these cytochromes is the CO-binding cytochrome o436. In all oxidation states examined, no absorbance in the 720 to 860 nm region was observed; it is concluded that both cytochromes d and o436 lack redox-active copper that has an environment similar to the copper(s) in mitochondrial cytochrome c oxidase. The amount of cytochrome d650 (but not the amount of reduced cytochrome o436) formed after photolysis is directly proportional to the oxygen concentration in the sample at the time of freeze trapping. The results are discussed in relation to the composition and mechanism of action of cytochrome d.  相似文献   

18.
The purified cytochrome aa3-type oxidase from Sulfolobus acidocaldarius (DSM 639) consists of a single subunit, containing one low-spin and one high-spin A-type hemes and copper [Anemüller, S. and Sch?fer, G. (1990) Eur. J. Biochem. 191, 297-305]. The enzyme metal centers were investigated by electron paramagnetic resonance spectroscopy (EPR), coupled to redox potentiometry. The low-spin heme EPR signal has the following g-values: gz = 3.02, gy = 2.23 and gx = 1.45 and the high-spin heme exhibits an almost axial spectrum (gy = 6.03 and gx = 5.97, E/D < 0.002). In the enzyme as isolated the low-spin resonance corresponds to 95 +/- 10% of the enzyme concentration, while the high-spin signal accounts for only 40 +/- 5%. However, taking into account the redox potential dependence of the high-spin heme signal, this value also rises to 95 +/- 10%. The high-spin heme signal of the Sulfolobus enzyme shows spectral characteristics distinct from those of the Paracoccus denitrificans one: it shows a smaller rhombicity (gy = 6.1 and gx = 5.9, E/D = 0.004 for the P. denitrificans enzyme) and it is easier to saturate, having a half saturation power of 148 mW compared to 360 mW for the P. denitrificans protein, both at 10 K. The EPR spectrum of an extensively dialyzed and active enzyme sample containing only one copper atom/enzyme molecule does not display CuA-like resonances, indicating that this enzyme contains only a CUB-type center. The EPR-redox titration of the high-spin heme signal, which is assigned to cytochrome a3, gives a bell shaped curve, which was simulated by a non-interactive two step redox process, with reduction potentials of 200 +/- 10 mV and 370 +/- 10 mV at pH = 7.4. The decrease of the signal amplitude at high redox potentials is proposed to be due to oxidation of a CUB(I) center, which in the CUB(II) state is tightly spin-coupled to the heme a3 center. The reduction potential of the low-spin resonance was determined using the same model as 305 +/- 10 mV at pH = 7.4 by EPR redox titration. Addition of azide to the enzyme affects only the high-spin heme signal, consistent with the assignment of this resonance to heme a3. The results are discussed in the context of the redox center composition of quinol and cytochrome c oxidases.  相似文献   

19.
Abstract Membranes of the extremely thermoacidophilic archaeon Desulfurolobus ambivalens grown under aerobic conditions contain a quinol oxidase of the cytochrome aa 3-type as the most prominent hemoprotein. The partially purified enzyme consists of three polypeptide subunits with apparent molecular masses of 40, 27 and 20 kDa and contains two heme A molecules and one copper atom. CO difference spectra suggest one heme to be a heme a 3-centre. The EPR spectra indicate the presence of a low-spin and a high-spin heme species. Redox titrations of the solubilized enzyme show the presence of two reduction processes, with apparent potentials of + 235 and + 330 mV. The enzyme cannot oxidize reduced cytochrome c , but rather serves as an oxidase of caldariella quinone. Due to their very simple composition, D . ambivalens cell appear as a promising candidate to study Structure-function relationships of cytochrome aa 3 in the integral membrane state.  相似文献   

20.
To probe the structure of the quinol oxidation site in loop VI/VII of the Escherichia coli cytochrome bd, we substituted three conserved residues (Gln249, Lys252, and Glu257) in the N-terminal region and three glutamates (Glu278, Glu279, and Glu280) in the first internal repeat. We found that substitutions of Glu257 by Ala or Gln, and Glu279 and Glu280 by Gln, severely reduced the oxidase activity and the expression level of cytochrome bd. In contrast, Lys252 mutations reduced only the oxidase activity. Blue shifts in the 440 and 630 nm peaks of the reduced Lys252 mutants and in the 561 nm peak of the reduced Glu257 mutants indicate the proximity of Lys252 to the heme b(595)-d binuclear center and Glu257 to heme b(558), respectively. Perturbations of reduced heme b(558) upon binding of aurachin D support structural changes in the quinol-binding site of the mutants. Substitutions of Lys252 and Glu257 caused large changes in kinetic parameters for the ubiquinol-1 oxidation. These results indicate that Lys252 and Glu257 in the N-terminal region of the Q-loop are involved in the quinol oxidation by bd-type terminal oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号