首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Oxidation of ferrous iron by Thiobacillus ferrooxidans SM-4 was inhibited competitively by increasing concentrations of ferric iron or cells. A kinetic analysis showed that binding of one inhibitor did not exclude binding of the other and led to synergistic inhibition by the two inhibitors. Binding of one inhibitor, however, was affected by the other inhibitor, and the apparent inhibition constant increased with increasing concentrations of the other inhibitor.  相似文献   

2.
The oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans that was absorbed and unabsorbed onto the surface of sulfur prills was studied. Unadsorbed sulfur-grown cells oxidized ferrous iron at a rate that was 3 to 7 times slower than that of ferrous iron-grown cells, but sulfur-grown cells were able to reach the oxidation rate of the ferrous iron-adapted cells after only 1.5 generations in a medium containing ferrous iron. Bacteria that were adsorbed to sulfur prills oxidized ferrous iron at a rate similar to that of unadsorbed sulfur-grown bacteria. They also showed the enhancement of ferrous iron oxidation activity in the presence of ferrous iron, even though sulfur continued to be available to the bacteria in this case. An increase in the level of rusticyanin together with the enhancement of the ferrous iron oxidation rate were observed in both sulfur-adsorbed and unadsorbed cells. On the other hand, sulfur oxidation by the adsorbed bacteria was not affected by the presence of ferrous iron in the medium. When bacteria that were adsorbed to sulfur prills were grown at a higher pH (ca. 2.5) in the presence of ferrous iron, they rapidly lost both ferrous iron and sulfur oxidation capacities and became inactive, apparently because of the deposition of a jarosite-like precipitate onto the surface to which they were attached.  相似文献   

3.
The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn.  相似文献   

4.
Kinetics of Iron Oxidation by Thiobacillus ferrooxidans   总被引:2,自引:0,他引:2       下载免费PDF全文
A statistical relationship between the rate of ferric ion production by a strain of Thiobacillus ferrooxidans and various levels of cell concentration, Fe2+ concentration, Na+ concentration, and temperature was studied by a direct colorimetric method at 304 nm. The relationship was linear (90 to 93%), cross-product (3 to 4%), and quadratic (1 to 2%). The levels of cell concentration and Fe2+ concentration and their respective interactions with one another and the other factors had the most significant effects on the regression models. The solution of the quadratic response surface for optimum oxidation was a saddle point, and the predicted critical levels of temperature, cell concentration, Fe2+ concentration, and Na+ concentration ranged between −6 and 2°C, 0.43 and 0.62 mg/ml, 72 and 233 mM, and 29.6 mM, respectively.  相似文献   

5.
Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.  相似文献   

6.
The oxidation of ferrous ions, in acid solution, by resting suspensions of Thiobacillus ferrooxidans produced sediments consisting of crystalline jarosites, amorphous ferric hydroxysulfates, or both. These products differed conspicuously in chemical composition and infrared spectra from precipitates formed by abiotic oxidation under similar conditions. The amorphous sediments, produced by bacterial oxidation, exhibited a distinctive fibroporous microstructure when examined by scanning electron microscopy. Infrared spectra indicated outer-sphere coordination of Fe(III) by sulfate ions, as well as inner-sphere coordination by water molecules and bridging hydroxo groups. In the presence of excess sulfate and appropriate monovalent cations, jarosites, instead of amorphous ferric hydroxysulfates, precipitated from bacterially oxidized iron solutions. It is proposed that the jarositic precipitates result from the conversion of outer-sphere (Td) sulfate, present in a soluble polymeric Fe(III) complex, to inner-sphere (C3v) bridging sulfate. The amorphous precipitates result from the further polymerization of hydroxo-linked iron octahedra and charge stabilized aggregation of the resulting iron complexes in solution. This view was supported by observations that bacterially oxidized iron solutions gave rise to either amorphous or jarositic sediments in response to ionic environments imposed after oxidation had been completed and the bacteria had been removed by filtration.  相似文献   

7.
氧化亚铁硫杆菌铁氧化系统分子生物学研究进展   总被引:6,自引:0,他引:6  
氧化亚铁硫杆菌(Thiobacillus ferrooxidans,简称T.f)是目前研究最多、最具经济价值的浸矿微生物。由于该菌的能量代谢对于生物浸矿起决定作用,因此其机制的研究必然能促进对该菌生理特性的认识及其遗传改造。氧化亚铁硫杆菌生长方式代表了迄今所知的能够进行生长的热力学极限,可供该菌生长利用的△Eh仅有340mV,氧化Fe2+所能得到的能量很少。在 Fe2+氧化过程中,电子通过电子传递链最终传递给氧,  相似文献   

8.
Molybdenum Oxidation by Thiobacillus ferrooxidans   总被引:1,自引:1,他引:1       下载免费PDF全文
Thiobacillus ferrooxidans AP19-3 oxidized molybdenum blue (Mo5+) enzymatically. Molybdenum oxidase in the plasma membrane of this bacterium was purified ca. 77-fold compared with molybdenum oxidase in cell extract. A purified molybdenum oxidase showed characteristic absorption maxima due to reduced-type cytochrome oxidase at 438 and 595 nm but did not show absorption peaks specific for c-type cytochrome. The optimum pH of molybdenum oxidase was 5.5. The activity of molybdenum oxidase was completely inhibited by sodium cyanide (5 mM) or carbon monoxide, and an oxidized type of cytochrome oxidase in a purified molybdenum oxidase was reduced by molybdenum blue, indicating that cytochrome oxidase in the enzyme plays a crucial role in molybdenum blue oxidation.  相似文献   

9.
Eight strains of Thiobacillus ferrooxidans (laboratory strains Tf-1 [= ATCC 13661] and Tf-2 [= ATCC 19859] and mine isolates SM-1, SM-2, SM-3, SM-4, SM-5, and SM-8) and three strains of Thiobacillus thiooxidans (laboratory strain Tt [= ATCC 8085] and mine isolates SM-6 and SM-7) were grown on ferrous iron (Fe2+), elemental sulfur (S0), or sulfide ore (Fe, Cu, and Zn). The cells were studied for their aerobic Fe2+ - and S0-oxidizing activities (O2 consumption) and anaerobic S0-oxidizing activity with ferric iron (Fe3+) (Fe2+ formation). Fe2+-grown T. ferrooxidans cells oxidized S0 aerobically at a rate of 2 to 4% of the Fe2+ oxidation rate. The rate of anaerobic S0 oxidation with Fe3+ was equal to the aerobic oxidation rate in SM-1, SM-3, SM-4, and SM-5, but was only one-half or less that in Tf-1, Tf-2, SM-2, and SM-8. Transition from growth on Fe2+ to that on S0 produced cells with relatively undiminished Fe2+ oxidation activities and increased S0 oxidation (both aerobic and anaerobic) activities in Tf-2, SM-4, and SM-5, whereas it produced cells with dramatically reduced Fe2+ oxidation and anaerobic S0 oxidation activities in Tf-1, SM-1, SM-2, SM-3, and SM-8. Growth on ore 1 of metal-leaching Fe2+-grown strains and on ore 2 of all Fe2+-grown strains resulted in very high yields of cells with high Fe2+ and S0 oxidation (both aerobic and anaerobic) activities with similar ratios of various activities. Sulfur-grown Tf-2, SM-1, SM-4, SM-6, SM-7, and SM-8 cultures leached metals from ore 3, and Tf-2 and SM-4 cells recovered showed activity ratios similar to those of other ore-grown cells. It is concluded that all the T. ferrooxidans strains studied have the ability to produce cells with Fe2+ and S0 oxidation and Fe3+ reduction activities, but their levels are influenced by growth substrates and strain differences.  相似文献   

10.
The effect of water potential on the growth of two strains of Thiobacillus ferroxidans was determined by adding defined amounts of sodium chloride or glycerol to the culture medium. The two strains differed slightly, and the most tolerant strain had a minimum water potential for growth of -15 to -32 bars when sodium chloride was used and -6 bars when glycerol was used. In another approach, the limiting water potential was determined by equilibrating small amounts of culture medium with atmospheres of relative humidities equivalent to specific water potentials, and the ability of the organism to grow and oxidize ferrous iron was determined. Under these conditions, which are analogous to those which might control water potential in a coal refuse pile or copper leaching dump, the lower limit at which iron oxidation occurred was -23 bars. The water potential of some coal refuse materials in which T. ferrooxidans was present were determined, and it was found that the water potentials at which the organism was active in these habitats were similar to those at which it was able to grow in culture. However, marked variation in water potential of coal refuse materials was found, presumably due to differences in clays and organic materials, and some coal refuse materials would probably never have water potentials at which the organism could grow. Some literature on the water potentials in copper leach dumps is reviewed, and it is concluded that control of water potential is essential to maximize the success of leaching operations. Because adequate drainage is necessary in a leach dump to ensure sufficient aeration, in many cases water availability in leach dumps may restrict the development of the bacterium necessary for the process.  相似文献   

11.
The microbiological oxidation of ferrous iron in batch and continuous systems has been investigated in relation to uranium extraction from a low-grade ore by Thiobacillus ferrooxidans. The influence of the parameters, agitation, and aeration on oxygen saturation concentration, rate of oxygen mass transfer, and rate of ferrous iron oxidation was demonstrated. The kinetic values, Vmax and K were determined using an adapted Monod equation for different dilution rates and initial concentrations of ferrous iron. The power requirements for initial leaching conditions were also calculated. Uranium extraction as high as 68% has been realized during nine days of treatment. Regrinding the leach residue and its subsequent leaching yielded 87% uranium solubilization.  相似文献   

12.
13.
氧化亚铁硫杆菌的形态及对Fe2+的氧化研究   总被引:6,自引:0,他引:6  
在纯培养的条件下,对江西德兴铜矿酸性矿坑水中分离出的一株氧化亚铁硫杆菌(Thiobacillus ferrooxidans)的细胞形态、生长条件以及对Fe2 的氧化进行了初步研究。透射电子显微镜检查的结果表明,其成熟菌体大小均一,有较好的运动性;采用光学显微镜对微生物进行菌群观测和利用血小板计数器法对细菌计数的结果表明,在摇床转速为160r/min的条件下,T.f.菌在9K液体培养基中最适生长条件为温度30℃左右,最佳初始pH 2.0;用重铬酸钾滴定法测定铁的结果表明,在摇床转速为160r/min的条件下,pH值1.7,温度30℃时T.f.菌对Fe2 的氧化速率最大,约为0.58g/L·h。  相似文献   

14.
Summary Thiobacillus ferrooxidans was immobilized by entrapment into calcium alginate matrix. The immobilized bacteria were used in packed-bed column reactors for the continuous oxidation of ferrous ion at pH 1.5. The presence of mineral salts resulted in a shorter lag period before a steady-state of about 95% iron oxidation was achieved. Parallel shake flask experiments were used to evaluate pH, mineral salts, and alginate toxicity as factors influencing biological iron oxidation. Manometric experiments indicated that the previous growth history of T. ferrooxidans was important in determining the rate of iron oxidation. Scanning electron microscopy and energy dispersive analysis of X-rays were used to characterize bacteria entrapped in calcium alginate and the enrichment of iron in the matrix.  相似文献   

15.
The bacterial oxidation of naturally occurring gallium-bearing chalcopyrite concentrate and a pure synthetic gallium (III) sulfide has been investigated at pH 1.8 and 35 degree C, using an active culture of Thiobacillus ferrooxidans. This oxidation process may proceed by direct or by indirect bacterial action. The highest dissolved gallium and copper concentrations were about 2.2 and 40.2 g/l, respectively. The order of the specific rate of oxygen uptake by T. ferrooxidans in approximately CuFES2 greater than or equal to gallium-bearing CuFeS2 greater than FeS2 greater than Cu2S greater than Cu2S greater than Ga2S3.  相似文献   

16.
Iron oxidation by cell envelopes of Thiobacillus ferrooxidans   总被引:3,自引:0,他引:3  
  相似文献   

17.
The biological leaching of pyrrhotite (Fe1-xS) by Thiobacillus ferrooxidans was studied to characterize the oxidation process and to identify the mineral weathering products. The process was biphasic in that an initial phase of acid consumption and decrease in redox potential was followed by an acid-producing phase and an increase in redox potential. Elemental S was one of the first products of pyrrhotite degradation detected by X-ray diffraction. Pyrrhotite oxidation also yielded K-jarosite [KFe3(SO4)2(OH)6], goethite (α-FeOOH), and schwertmannite [Fe8O8(OH)6SO4] as solid-phase products. Pyrrhotite was mostly depleted after 14 days, whereas impurities in the form of pyrite (cubic FeS2) and marcasite (orthorhombic FeS2) accumulated in the leach residue.  相似文献   

18.
Growth and iron oxidation by Thiobacillus ferrooxidans are affected by the presence of silver, molybdenum, uranium and copper. Growth is more sensitive to the presence of these metals than the iron oxidation system of the bacterium. Silver toxicity is much more specific than molybdenum and uranium. Iron oxidation is inhibited at only 0.1 parts/106 of silver which is 300 and 5000 times less than the minimum inhibitory concentration of molybdenum and uranium, respectively. Copper and zinc at concentrations as high as 2000 and 15 000 parts/106, respectively, have no influence on the iron oxidation rate. In the presence of silver, molybdenum, uranium and copper below their minimum inhibitory concentrations as well as in the absence of nitrogen, phosphorus and potassium, iron oxidation is not coupled to growth.  相似文献   

19.
Summary Ferrous-iron oxidation by Thiobacillus ferrooxidans was inhibited by a number of mineral flotation reagents. Dowfroth 250 and sodium butylxanthate were the least toxic reagents studied.  相似文献   

20.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe(2+) medium (pH 2.5) supplemented with 6 microM Hg(2+). In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 microM Hg(2+). When incubated for 3 h in a salt solution (pH 2.5) with 0.7 microM Hg(2+), resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe(2+) was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30 degrees C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe(2+)-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 microM Hg(2+) and 1 mM Fe(2+), plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe(2+)-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe(2+)-dependent mercury volatilization activity of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号