首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized a novel, temperature-sensitive mutation affecting motility in Tetrahymena thermophila. Mutants grew and divided normally at the restrictive temperature (38 degrees C), but became nonmotile. Scanning electron microscopic analysis indicated that nonmotile mutants contained the normal number of cilia and that the cilia were of normal length. Transmission electron microscopic analysis indicated that axonemes isolated from nonmotile mutants lacked outer dynein arms, so the mutation was named oad 1 (outer arm deficient). Motile mutants shifted to 38 degrees C under conditions that prevent cell growth and division (starvation) remained motile suggesting that once assembled into axonemes at the permissive temperature (28 degrees C) the outer arm dyneins remain functional at 38 degrees C. Starved, deciliated mutants regenerated a full complement of functional cilia at 38 degrees C, indicating that the mechanism that incorporates the outer arm dynein into developing axonemes is not affected by the oad 1 mutation. Starved, nonmotile mutants regained motility when shifted back to 28 degrees C, but not when incubated with cycloheximide. We interpret these results to rule out the hypothesis that the oad 1 mutation affects the site on the microtubules to which the outer arm dyneins bind. Axonemes isolated from mutants grown for one generation at 38 degrees C had a mean of 6.0 outer arm dyneins, and axonemes isolated from mutants grown for two generations at 38 degrees C had a mean of 3.2 outer arm dyneins. Taken together, these results indicate that the oad 1 mutation affects the synthesis of outer arm dyneins in Tetrahymena.  相似文献   

2.
ABSTRACT. Tetrahymena thermophila mutants homozygous for the oad mutation become nonmotile when grown at the restrictive temperature of 39° C. Axonemes isolated from nonmotile oad mutants ( oad 39° C axonemes) lack approximately 90% of their outer dynein arms and are deficient in 22S dynein. Here we report that oad 39° C axonemes contain 40% of the 22S dynein heavy chains that wild-type axonemes contain and that oad axonemes do not undergo ATP-induced microtubule sliding in vitro. Wild-type 22S dynein will bind to the outer arm position in oad axonemes and restore ATP-induced microtubule sliding in those axonemes. Unlike wild-type 22S dynein, oad 22S dynein does not bind to the outer arm position in oad axonemes. These data indicate that the oad mutation affects some component of the outer arm dynein itself rather than the outer arm dynein binding site. These data also indicate that oad axonemes can be used to assay outer dynein arm function.  相似文献   

3.
ABSTRACT. Tetrahymena thermophila mutants homozygous for the oad mutation become nonmotile when grown at the restrictive temperature, and axonemes isolated from nonmotile mutants lack approximately 90% of their outer dynein arms. Electrophoretic analyses of axonemes isolated from nonmotile mutants ( oad axonemes) indicate they contain significantly fewer of the 22 S dynein heavy chains that axonemes isolated from wild-type cells (wild-type axonemes) contain. The 22 S dynein heavy chains that remain in axonemes isolated from nonmotile, oad mutants are assembled into 22 S dynein particles that exhibit wild-type levels of ATPase activity. Two-dimensional gel electrophoresis of oad axonemes show that they are deficient in no proteins other than those proteins thought to be components of 22 S dynein. This report is the first formal proof that outer dynein arms in Tetrahymena cilia are composed of 22 S dynein.  相似文献   

4.
Experiments were carried out to see if isolated inner arm dyneins could functionally combine with axonemes lacking them. High-salt extract from the axoneme of Chlamydomonas oda1 mutant lacking outer-arm dynein was added to the demembranated cell models of ida1oda1 lacking inner arm dynein f (dynein I1) and outer arm dynein. After incubation, the originally paralyzed ida1oda1 axonemes recovered the ability to beat in the presence of ATP. A similar good motility recovery after incubation with crude oda1 extract was observed in ida9oda2 lacking outer arm and inner arm dynein c, and partial recovery in ida4oda1 lacking outer arm and inner arm species a, c, and d. These observations indicate that dynein f and dynein c can functionally bind with mutant axonemes lacking them. A method for combining isolated inner arm dyneins with axonemes in a functionally active manner should provide a powerful experimental tool with which to study the mechanism of beating.  相似文献   

5.
Flagellar dynein activity is regulated by phosphorylation. One critical phosphoprotein substrate in Chlamydomonas is the 138-kDa intermediate chain (IC138) of the inner arm dyneins (Habermacher, G., and Sale, W. S. (1997) J. Cell Biol. 136, 167-176). In this study, several approaches were used to determine that casein kinase I (CKI) is physically anchored in the flagellar axoneme and regulates IC138 phosphorylation and dynein activity. First, using a videomicroscopic motility assay, selective CKI inhibitors rescued dynein-driven microtubule sliding in axonemes isolated from paralyzed flagellar mutants lacking radial spokes. Rescue of dynein activity failed in axonemes isolated from these mutant cells lacking IC138. Second, CKI was unequivocally identified in salt extracts from isolated axonemes, whereas casein kinase II was excluded from the flagellar compartment. Third, Western blots indicate that within flagella, CKI is anchored exclusively to the axoneme. Analysis of multiple Chlamydomonas motility mutants suggests that the axonemal CKI is located on the outer doublet microtubules. Finally, CKI inhibitors that rescued dynein activity blocked phosphorylation of IC138. We propose that CKI is anchored on the outer doublet microtubules in position to regulate flagellar dynein.  相似文献   

6.
Dynein motors of cilia and flagella function in the context of the axoneme, a very large network of microtubules and associated proteins. To understand how dyneins assemble and attach to this network, we characterized two Chlamydomonas outer arm dynein assembly (oda) mutants at a new locus, ODA16. Both oda16 mutants display a reduced beat frequency and altered swimming behavior, similar to previously characterized oda mutants, but only a partial loss of axonemal dyneins as shown by both electron microscopy and immunoblots. Motility studies suggest that the remaining outer arm dyneins on oda16 axonemes are functional. The ODA16 locus encodes a 49-kDa WD-repeat domain protein. Homologues were found in mammalian and fly databases, but not in yeast or nematode databases, implying that this protein is only needed in organisms with motile cilia or flagella. The Chlamydomonas ODA16 protein shares 62% identity with its human homologue. Western blot analysis localizes more than 90% of ODA16p to the flagellar matrix. Because wild-type axonemes retain little ODA16p but can be reactivated to a normal beat in vitro, we hypothesize that ODA16p is not an essential dynein subunit, but a protein necessary for dynein transport into the flagellar compartment or assembly onto the axoneme.  相似文献   

7.
One major protein was selectively solubilized when phosphate analogues, such as inorganic vanadate (Vi), beryllium fluoride (BeFx) or aluminum fluoride (AlFx), were added to ciliary axonemes of Tetrahymena ssp. (T. pyriformis or T. thermophila) in the presence of ATP. This protein contains three high molecular weight polypeptides, characteristic of an outer arm dynein. Electron microscopic observation of the axonemes after solubilization using ATP and Vi revealed axonemes partially lacking outer arm dyneins. These results suggest that the solubilized protein is an outer arm dynein and also that a dynein-ADP-phosphate complex decreases its affinity with the adjacent microtubules within axonemes. Limited digestion with chymotrypsin revealed that each solubilized dynein has a similar conformation, but it is markedly different from that of dynein in the absence of ATP or a phosphate analogue. The solubilized dynein obtained by the addition of Vi and ATP to axonemes was digested by UV irradiation to yield at least five new polypeptides (240, 230, 225, 180 and 160 kDa) but the dyneins solubilized by BeFx (or AlFx) in the presence of ATP did not produce any photocleavage products under the same conditions.  相似文献   

8.
Members of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum. Levels of LC7b are reduced approximately 20% in axonemes isolated from strains lacking inner arm I1 and are approximately 80% lower in the absence of the outer arms. When both dyneins are missing, LC7b levels are diminished to <10%. In oda9 axonemal extracts that completely lack outer arms, LC7b copurifies with inner arm I1, whereas in ida1 extracts that are devoid of I1 inner arms it associates with outer arm dynein. We also have observed that some LC7a is present in both isolated axonemes and purified 18S dynein from oda1, suggesting that it is also a component of both the outer arm and inner arm I1. Intriguingly, in axonemal extracts from the LC7a null mutant, oda15, which assembles approximately 30% of its outer arms, LC7b fails to copurify with either dynein, suggesting that it interacts with LC7a. Furthermore, both the outer arm gamma heavy chain and DC2 from the outer arm docking complex completely dissociate after salt extraction from oda15 axonemes. EDC cross-linking of purified dynein revealed that LC7b interacts with LC3, an outer dynein arm thioredoxin; DC2, an outer arm docking complex component; and also with the phosphoprotein IC138 from inner arm I1. These data suggest that LC7a stabilizes both the outer arms and inner arm I1 and that both LC7a and LC7b are involved in multiple intradynein interactions within both dyneins.  相似文献   

9.
Ciliary beat frequency is primarily regulated by outer arm dyneins (22 S dynein). Chilcote and Johnson (Chilcote, T. J., and Johnson, K. A. (1990) J. Biol. Chem. 256, 17257-17266) previously studied isolated Tetrahymena 22 S dynein, identifying a protein p34, which showed cAMP-dependent phosphorylation. Here, we characterize the molecular biochemistry of p34 further, demonstrating that it is the functional ortholog of the 22 S dynein regulatory light chain, p29, in Paramecium. p34, thiophosphorylated in isolated axonemes in the presence of cAMP, co-purified with 22 S dynein and not with inner arm dynein (14 S dynein). Isolated 22 S dynein containing phosphorylated p34 showed approximately 70% increase in in vitro microtubule translocation velocity compared with its unphosphorylated counterpart. Extracted p34 rebound to isolated 22 S dynein from either Tetrahymena or Paramecium but not to 14 S dynein from either ciliate. Binding of radiolabeled p34 to 22 S dynein was competitive with p29. Phosphorylated p34 was not present in axonemes isolated from a mutant lacking outer arms. Two-dimensional gel electrophoresis followed by phosphorimaging revealed at least five phosphorylated p34-related spots, consistent with multiple phosphorylation sites in p34 or perhaps multiple isoforms of p34. These new features suggest that a class of outer arm dynein light chains including p34 regulates microtubule sliding velocity and consequently ciliary beat frequency through phosphorylation.  相似文献   

10.
Dynein is the large molecular motor that translocates to the (-) ends of microtubules. Dynein was first isolated from Tetrahymena cilia four decades ago. The analysis of the primary structure of the dynein heavy chain and the discovery that many organisms express multiple dynein heavy chains have led to two insights. One, dynein, whose motor domain comprises six AAA modules and two potential mechanical levers, generates movement by a mechanism that is fundamentally different than that which underlies the motion of myosin and kinesin. And two, organisms with cilia or flagella express approximately 14 different dynein heavy chain genes, each gene encodes a distinct dynein protein isoform, and each isoform appears to be functionally specialized. Sequence comparisons demonstrate that functionally equivalent isoforms of dynein heavy chains are well conserved across species. Alignments of portions of the motor domain result in seven clusters: (i) cytoplasmic dynein Dyhl; (ii) cytoplasmic dynein Dyh2; (iii) axonemal outer arm dynein alpha; (iv) outer arm dyneins beta and gamma; (v) inner arm dynein 1alpha; (vi) inner arm dynein 1beta; and (vii) a group of apparently single-headed inner arm dyneins. Some of the dynein groups contained more than one representative from a single organism, suggesting that these may be tissue-specific variants.  相似文献   

11.
Tetrahymena thermophila could still swim after incubation of the cell body at 40°C for 30 min, whereas Tetrahymena pyriformis did not show any motility after the treatment. Turbidity measurements revealed that axonemes of T. pyriformis lost ATP-dependent sliding activity by the heat treatment, whereas those of T. thermophilia still had the activity under the same conditions. In connection with this difference in susceptibility to high temperature, the biochemical characteristics of dyneins were compared between the two species of Tetrahymena. Axonemal dyneins from the two species had significant vanadate-sensitive ATPase activity even after the heat treatment. Native gel electrophoresis and the following two-dimensional electrophoresis showed that the outer arm dynein of T. thermophilia is more stable in maintaining native configuration than that of T. pyriformis against the heat treatment, although both treated dyneins keep three (α, β and γ) subunits. Analysis by peptide mapping demonstrated that β- and γ-subunits of the outer arm dynein are considerably different in amino acid sequences between the two species. These results imply that dynein of T. thermophilia changed their amino acid sequences and biochemical characteristics to adapt to high temperature.  相似文献   

12.
The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S dyneins to the axonemes of the outer armless mutants oda1- oda6. A third factor that sediments at integral 7S is required for efficient reconstitution of the outer arms on the axonemes of oda1 and oda3. However, this factor is not necessary for reconstitution on the axonemes of oda2, oda4, oda5, and oda6. SDS-PAGE analysis indicates that the axonemes of the former two mutants lack a integral of 70-kD polypeptide that is present in those of the other mutants as well as in the 7S fraction from the wild-type extract. Furthermore, electron micrographs of axonemal cross sections revealed that the latter four mutants, but not oda1 or oda3, have small pointed structures on the outer doublets, at a position in cross section where outer arms normally occur. We suggest that the 7S factor constitutes the pointed structure on the outer doublets and facilitates attachment of the outer arm. The discovery of this structure raises a new question as to how the attachment site for the outer arm dynein is determined within the axoneme.  相似文献   

13.
《The Journal of cell biology》1988,107(6):2253-2258
35 strains of Chlamydomonas mutant missing the entire outer dynein arm were isolated by screening slow-swimming phenotypes. They comprised 10 independent genetic loci (odal-10) including those of previously isolated mutants oda38 and pf28. The 10 loci were distinct from pf13 and pf22, loci for nonmotile mutants missing the outer arm. These results indicate that at least 12 genes are responsible for the assembly of the outer dynein arms. There were no mutants lacking partial structures of the outer arm, suggesting that lack of a single component results in failure of assembly of entire outer arms. Temporary dikaryons derived from mating of two different oda strains often, but not always, recovered the wild-type motility within 2 h of mating. Hence, outer arms can be transported and attached to the outer doublets independently of flagellar growth.  相似文献   

14.
Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N + 1) tipward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. The 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2+, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

15.
Yamamoto R  Yanagisawa HA  Yagi T  Kamiya R 《FEBS letters》2006,580(27):6357-6360
To elucidate the subunit composition of axonemal inner-arm dynein, we examined a 38 kDa protein (p38) co-purified with a Chlamydomonas inner arm subspecies, dynein d. We found it is a novel protein conserved among a variety of organisms with motile cilia and flagella. Immunoprecipitation using specific antibody verified its association with a heavy chain, actin and a previously identified light chain (p28). Unexpectedly, mutant axonemes lacking dynein d and other dyneins retained reduced amounts of p38. This finding suggests that p38 is involved in the docking of dynein d to specific loci.  相似文献   

16.
ABSTRACT Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N+1) upward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. the 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2-, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

17.
18.
Substructure of the outer dynein arm   总被引:17,自引:11,他引:6  
The substructure of the outer dynein arm has been analyzed in quick-frozen deep-etch replicas of Tetrahymena and Chlamydomonas axonemes. Each arm is found to be composed of five morphologically discrete components: an elliptical head; two spherical feet; a slender stalk; and an interdynein linker. The feet make contact with the A microtubule of each doublet; the stalk contacts the B microtubule; the head lies between the feet and stalk; and the linker associates each arm with its neighbor. The spatial relationships between these five components are found to be distinctly different in rigor (ATP-depleted) versus relaxed (ATP- or vanadate plus ATP-treated) axonemes, and the stalk appears to alter its affinity for the B microtubule in the relaxed state. Images of living cilia attached to Tetrahymena cells show that the relaxed configuration is adopted in vivo. We relate our observations to morphological and experimental studies reported by others and propose several models that suggest how this newly described dynein morphology may relate to dynein function.  相似文献   

19.
Dynein heavy chains are involved in microtubule-dependent transport processes. While cytoplasmic dyneins are involved in chromosome or vesicle movement, axonemal dyneins are essential for motility of cilia and flagella. Here we report the isolation of dynein heavy chain (DHC)-like sequences in man and mouse. Using polymerase chain reaction and reverse-transcribed human and mouse testis RNA cDNA fragments encoding the conserved ATP binding region of dynein heavy chains were amplified. We identified 11 different mouse and eight human dynein-like sequences in testis which show high similarity to known dyneins of different species such as rat, sea urchin or green algae. Sequence similarities suggest that two of the mouse clones and one human clone encode putative cytoplasmic dynein heavy chains, whereas the other sequences show higher similarity to axonemal dyneins. Two of nine axonemal dynein isoforms identified in the mouse testis are more closely related to known outer arm dyneins, while seven clones seem to belong to the inner arm dynein group. Of the isolated human isoforms three clones were classified as outer arm and four clones as inner arm dynein heavy chains. Each of the DHC cDNAs corresponds to an individual gene as determined by Southern blot experiments. The alignment of the deduced protein sequences between human (HDHC) and mouse (MDHC) dynein fragments reveals higher similarity between single human and mouse sequences than between two sequences of the same species. Human and mouse cDNA fragments were used to isolate genomic clones. Two of these clones, gHDHC7 and gMDHC7, are homologous genes encoding axonemal inner arm dyneins. While the human clone is assigned to 3p21, the mouse gene maps to chromosome 14.  相似文献   

20.
To learn more about how dyneins are targeted to specific sites in the flagellum, we have investigated a factor necessary for binding of outer arm dynein to the axonemal microtubules of Chlamydomonas. This factor, termed the outer dynein arm-docking complex (ODA-DC), previously was shown to be missing from axonemes of the outer dynein armless mutants oda1 and oda3. We have now partially purified the ODA-DC, determined that it contains equimolar amounts of M(r) approximately 105,000 and approximately 70,000 proteins plus a third protein of M(r) approximately 25,000, and found that it is associated with the isolated outer arm in a 1:1 molar ratio. We have cloned a full-length cDNA encoding the M(r) approximately 70,000 protein; the sequence predicts a 62.5-kDa protein with potential homologs in higher ciliated organisms, including humans. Sequencing of corresponding cDNA from strain oda1 revealed it has a mutation resulting in a stop codon just downstream of the initiator ATG; thus, it is unable to make the full-length M(r) approximately 70,000 protein. These results demonstrate that the ODA1 gene encodes the M(r) approximately 70,000 protein, and that the protein is essential for assembly of the ODA-DC and the outer dynein arm onto the doublet microtubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号