首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 734 毫秒
1.
论文对筛选并鉴定为Thermoanaerobacterium saccharolyticum菌株的生长、底物利用情况、产物生成以及酒精耐受性进行了研究。结果表明,该菌在以甘露糖、葡萄糖和木糖为碳源时生长较好,同时能够较好的利用木聚糖和木薯淀粉;最适底物浓度为15g/L;不同的葡萄糖:木糖比例对其生长无显著影响;能耐受的培养基最高初始酒精浓度为3%(V/V)。在5g/L的木聚糖、木糖和木薯淀粉培养基中发酵60h后,产物主要有乙醇、乳酸和乙酸,乙醇产量分别为0.824、0.867和0.916g/L。  相似文献   

2.
固定化酵母酒精生成动力学及其数学模型   总被引:1,自引:0,他引:1  
本文采用解析法对海藻酸钙为载体,以葡萄糖为底物进行酒精连续发酵的管式反应器内所呈现的固定化K字酵母酒精发酵动力学进行了较为系统的研究,建立了由6个方程组成的酒精生成动力学数学模型,并对此模型进行了应用方面的研究。结果表明:此动力学呈现葡萄糖的反竞争性和酒精非竞争性联合抑制的不可逆特征,其数学模型在所涉及的参数拟合及分别在不同反应器和浓度扩展时的发酵过程所进行的实际校验中,最大的算术平均百分误差为13.8l%,在薯干糖化液的发酵动力学应用中,具有平均差为8.28%之良好预测精度,同时,通过模型中参数式计算得葡萄糖抑制的浓度范围为130—450g/L,而酒精抑制的浓度范围是3.07—16.45%(v/v)。  相似文献   

3.
嗜鞣管囊酵母(Pachysolen tannophilus)是可以同时发酵葡萄糖和木糖为酒精的菌种,在其生长和发酵培养基中分别添加不同浓度((0~200mg/L)的肌醇以及不同起始浓度的酒精,以考察外加肌醇对嗜鞣管囊酵母生长、产酒精能力和耐酒精能力的影响.结果 表明,添加肌醇前后,嗜鞣管囊酵母的生物量及发酵的酒精产量均有所增加.外加肌醇对嗜鞣管囊酵母生长有轻微的刺激作用,酵母生长最适肌醇浓度为150mg/L;而对酵母生长的耐酒精能力却有明显的影响, 并且,菌种在YEPD培养基中的耐酒精能力高于在YEPX培养基中的耐酒精能力.经实验测定,肌醇对嗜鞣管囊酵母产酒精能力及发酵的耐酒精能力均有显著的影响.发酵培养基中未添加起始浓度的酒精时,菌种发酵的最适肌醇浓度为100mg/L,此时生成的酒精产量为45.20g/L.当分别添加起始酒精浓度为10%和12%时,随着肌醇浓度的增加,菌种发酵生成的酒精浓度均呈上升趋势;肌醇浓度为200mg/L时,两种起始酒精浓度下,酒精的净生成量均达到最大,分别为17.18g/L和16.68g/L.  相似文献   

4.
稀释速率对高浓度酒精连续发酵过程振荡行为的影响   总被引:3,自引:0,他引:3  
在一搅拌罐和三段管式反应器组成的组合反应器系统中,使用葡萄糖浓度为280g/L,添加5g/L酵母膏和3g/L蛋白胨的底物,在总稀释速率分别为0.032h-1,0.024h-1,0.017h-1,0.012h-1和0.006h-1的条件下,考察了稀释速率对高浓度酒精发酵系统振荡行为的影响。结果表明,振荡行为在特定的稀释速率条件下呈现,进而基于数学上的分岔理论,分析了振荡行为发生的可能性及对应的稀释速率范围,并与实验结果进行了比较,在此基础上,讨论了振荡行为对酒精发酵过程的影响。  相似文献   

5.
通过单因素实验和正交实验对粘红酵母和钝顶螺旋藻混合培养的培养基进行了优化,得到的优化培养基于5L发酵罐中实验,葡萄糖质量浓度低于10.0g/L时,开始流加600g/L葡萄糖,控制葡萄糖质量浓度在(20±5)g/L,最终得到的油脂产量达到16.0g/L。  相似文献   

6.
酒精酵母在连续发酵中的振荡行为研究   总被引:1,自引:0,他引:1  
初步分析酒精酵母在连续发酵中的振荡行为的产生条件及产生机理。通过改变稀释率、pH值、溶氧和进料葡萄糖浓度等条件 ,观察不同操作条件对酒精酵母菌生长和代谢行为的影响。在 10~ 15 g/L的较低葡萄糖浓度 ,0 .10~ 0 .2 0h-1的较低稀释率 ,以及 70 %左右的适度的溶氧浓度等发酵条件下 ,酒精酵母会出现同步的代谢振荡现象。一定条件下 ,菌体浓度处于振荡状态 ,残余葡萄糖浓度不可测或在很低水平振荡 ,这些发现预示着控制机制的新发展。  相似文献   

7.
木糖的高效发酵是制约纤维素燃料乙醇生产的技术瓶颈之一,高性能发酵菌种的开发是本领域研究的重点。以木糖发酵的典型菌株休哈塔假丝酵母为材料,研究氮源配比、葡萄糖和木糖初始浓度、葡萄糖添加及典型抑制物等因素对其木糖利用和乙醇发酵性能的影响规律。结果表明,硫酸铵更适宜于木糖和葡萄糖发酵产乙醇。在摇瓶振荡发酵条件下,该酵母可发酵164.0 g/L葡萄糖生成61.9 g/L乙醇,糖利用率和乙醇得率分别为99.8%和74.0%;受酵母细胞膜上转运体系的限制,对木糖的最高发酵浓度为120.0 g/L,可生成45.7 g/L乙醇,糖利用率和乙醇得率分别达到94.8%和87.0%。休哈塔假丝酵母发酵木糖的主要产物为乙醇,仅生成微量的木糖醇;添加葡萄糖可促进木糖的利用;休哈塔假丝酵母在葡萄糖发酵时的乙酸和甲酸的耐受浓度分别为8.32和2.55 g/L,木糖发酵时的乙酸和甲酸的耐受浓度分别为6.28和1.15 g/L。  相似文献   

8.
酿酒酵母培养基中主要因素对海藻糖积累的影响   总被引:3,自引:0,他引:3  
在对实验室保藏菌种Saccharomyces cerevisiae HY01优化前的摇瓶发酵观察的基础上,采用单因子与响应曲面相结合的实验设计方法研究了酿酒酵母培养基中的初始葡萄糖浓度、无机氮源硫酸铵浓度、酵母浸出粉浓度、碳源与无饥氮源的交互作用以及无机盐和微量元素浓度对海藻糖积累的影响。实验证明碳氮源交互作用明显,并得到了以上各因素的最优值,即初始葡萄糖浓度为20g/L,(NH4)2SO4浓度为4.5g/L,酵母浸出粉浓度为5g/L,微量元素溶液5.0ml/L;硫酸镁0.3g/L;磷酸氢二钠3.67g/L;磷酸二氢钾0.76g/L时,酿酒酵母中海藻糖的干重含量可以达到14.74%,比优化前海藻糖的干重含量12.24%提高了20.41%.  相似文献   

9.
用酶标免疫检测法研究了根瘤菌4012a菌株细胞分裂素发酵的适宜培养基和培养条件。结果表明,其最佳培养基为(g/L):葡萄糖10.0,(NH4)2SO41.0,K2HPO4·3H2O0.6,MgSO4·7H2O0.1,CaCl2·2H2O0.4,FeCI3·6H2O0.04,Na2MoO4·2H2O0.1mg/L,泛酸钙100μg/L,腺漂吟200mg/L。该菌株在150r/min的旋转摇床上27℃振荡培养96h,发酵液中细胞分裂素产量可达908μg/L,生物活性(萝卜子叶扩大法)为1mg/L激动素当量。  相似文献   

10.
促甲基化因子对西索米星发酵的影响   总被引:3,自引:0,他引:3  
研究发现,发酵培养基中添加2.0—3.0g,/L蛋氨酸或7.5—10.0mg,/L氯化钴可明显促进西索米星的合成。蛋氨酸的添加时机和添加方式对西索米星产物合成的作用明显不同。在产物合成中前期(30-48h)添加蛋氨酸的效果最佳。当发酵液中蛋氨酸初始浓度为0.656g/L时,与在产物合成初期一次性添加相比,1.5g/L蛋氨酸在产物合成初期、中期和后期均分成3次添加的效果更优,当发酵至91h结束时,发酵液中西索米星浓度可达0.70g/L。  相似文献   

11.
Using a generalSaccharomyces cerevisiae as a model strain, continuous ethanol fermentation was carried out in a stirred tank bioreactor with a working volume of 1,500 mL. Three different gravity media containing glucose of 120, 200 and 280 g/L, respectively, supplemented with 5 g/L yeast extract and 3 g/L peptone, were fed into the fermentor at different dilution rates. Although complete steady states developed for low gravity medium containing 120 g/L glucose, quasi-steady states and oscillations of the fermented parameters, including residual glucose, ethanol and biomass were observed when high gravity medium containing 200 g/L glucose and very high gravity medium containing 280 g/L glucose were fed at the designated dilution rate of 0.027 h−1. The observed quasi-steady states that incorporated these steady states, quasi-steady states and oscillations were proposed as these oscillations were of relatively short periods of time and their averages fluctuated up and down almost symmetrically. The continuous kinetic models that combined both the substrate and product inhibitions were developed and correlated for these observed quasi-steady states.  相似文献   

12.
利用全转录工程(gTME)方法将全局转录因子spt15随机突变并克隆表达, 构建突变库。将突变基因连接到表达载体 pYX212上, 醋酸锂法转化入不利用木糖的酿酒酵母YPH499中, 经特定的培养基初筛获得高效利用木糖并共发酵木糖和葡萄糖的酿酒酵母重组菌株。对获得的重组菌株进行了初步研究, 该菌株能够很好的利用木糖并共发酵木糖和葡萄糖。在30oC, 200 r/min, 发酵96 h时, 50 g/L木糖和葡萄糖的利用率为94.0%和98.9%, 乙醇产率为32.4%和31.6%, 原始菌株乙醇产率为44.3%; 当木糖和葡萄糖以质量比1:1混合发酵时, 木糖和葡萄糖利用率分别为91.7%和85.9%, 乙醇产率为26%。木糖醇的含量极低。  相似文献   

13.
利用全转录工程(gTME)方法将全局转录因子spt15随机突变并克隆表达, 构建突变库。将突变基因连接到表达载体 pYX212上, 醋酸锂法转化入不利用木糖的酿酒酵母YPH499中, 经特定的培养基初筛获得高效利用木糖并共发酵木糖和葡萄糖的酿酒酵母重组菌株。对获得的重组菌株进行了初步研究, 该菌株能够很好的利用木糖并共发酵木糖和葡萄糖。在30oC, 200 r/min, 发酵96 h时, 50 g/L木糖和葡萄糖的利用率为94.0%和98.9%, 乙醇产率为32.4%和31.6%, 原始菌株乙醇产率为44.3%; 当木糖和葡萄糖以质量比1:1混合发酵时, 木糖和葡萄糖利用率分别为91.7%和85.9%, 乙醇产率为26%。木糖醇的含量极低。  相似文献   

14.
Summary Ethanol production byZ.mobilis has been studied in continuous culture with 10, 15 and 20% glucose media. At 10% glucose, steady state conditions were achieved under glucose-limited conditions. At 15 and 20% glucose, the glucose was not fully metabolized even at low dilution rates and oscillatory behavior was evident. It is proposed that ethanol inhibition of growth is responsible for these phenomena. Comparison of kinetic parameters with those from previously published batch data revealed similar values. The maintenance energy coefficient (m) forZ.mobilis was relatively high and was calculated as 1.6 g/g/h for 10% glucose and 3.1 g/g/h for 15% glucose.  相似文献   

15.
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8?g/L in xylose and 52.6?g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4?g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40?g/L of ethanol and ethanol production capacity of the yeast was 52?g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170?g/L sugar concentrations.  相似文献   

16.
Conversion of paper sludge to ethanol was investigated with the objective of operating under conditions approaching those expected of an industrial process. Major components of the bleached Kraft sludge studied were glucan (62 wt.%, dry basis), xylan (11.5%), and minerals (17%). Complete recovery of glucose during compositional analysis required two acid hydrolysis treatments rather than one. To avoid the difficulty of mixing unreacted paper sludge, a semicontinuous solids-fed laboratory bioreactor system was developed. The system featured feeding at 12-h intervals, a residence time of 4 days, and cellulase loading of 15 to 20 FPU/g cellulose. Sludge was converted to ethanol using simultaneous saccharification and fermentation (SSF) featuring a -glucosidase-supplemented commercial cellulase preparation and glucose fermentation by Saccharomyces cerevisiea. SSF was carried out for a period of 4 months in a first-generation system, resulting in an average ethanol concentration of 35 g/L. However, steady state was not achieved and operational difficulties were encountered. These difficulties were avoided in a retrofitted design that was operated for two 1-month runs, achieving steady state with good material balance closure. Run 1 with the retrofitted reactor produced 50 g/L ethanol at a cellulose conversion of 74%. Run 2 produced 42 g/L ethanol at a conversion of 92%. For run 2, the ethanol yield was 0.466 g ethanol/g glucose equivalent fermented and >94% of the xylan fed to the reactor was solubilized to a mixture of xylan oligomers and xylose.  相似文献   

17.
A bioreactor system composed of a stirred tank and three tubular bioreactors in series was established, and continuous ethanol fermentation was carried out using a general Saccharomyces cerevisiae strain and a very high gravity medium containing 280 g L(-1) glucose, supplemented with 5 g L(-1) yeast extract and 3 g L(-1) peptone. Sustainable oscillations of glucose, ethanol, and biomass were observed when the tank was operated at the dilution rate of 0.027 h(-1), which significantly affected ethanol fermentation performance of the system. After the tubular bioreactors were packed with 1/2' Intalox ceramic saddles, the oscillations were attenuated and quasi-steady states were achieved. Residence time distributions were studied for the packed bioreactors by the step input response technique using xylose as a tracer, which was added into the medium at a concentration of 20 g L(-1), indicating that the backmixing alleviation assumed for the packed tubular bioreactors could not be established, and its contribution to the oscillation attenuation could not be verified. Furthermore, the role of the packing's yeast cell immobilization in the oscillation attenuation was investigated by packing the tubular bioreactors with packings with significant difference in yeast cell immobilization effects, and the experimental results revealed that only the Intalox ceramic saddles and wood chips with moderate yeast cell immobilization effects could attenuate the oscillations, and correspondingly, improved the ethanol fermentation performance of the system, while the porous polyurethane particles with good yeast cell immobilization effect could not. And the viability analysis for the immobilized yeast cells illustrated that the extremely lower yeast cell viability within the tubular bioreactors packed with the porous polyurethane particles could be the reason for their inefficiency, while the yeast cells loosely immobilized onto the surfaces of the Intalox ceramic saddles and wood chips could be renewed during the fermentation, guaranteeing their viability and making them more efficient in attenuating the oscillations. The packing Raschig rings without yeast cell immobilization effect did not affect the oscillatory behavior of the tubular bioreactors, further supporting the role of the yeast cell immobilization in the oscillation attenuation.  相似文献   

18.
Saccharomyces cerevisiae 424A (LNH-ST) strain was used for fermentation of glucose and xylose. Growth kinetics and ethanol productivity were calculated for batch fermentation on media containing different combinations of glucose and xylose to give a final sugar concentration of 20+/-0.8 g/L. Growth rates obtained in pure xylose-based medium were less than those for media containing pure glucose and glucose-xylose mixtures. A maximum specific growth rate micro(max) of 0.291 h(-1) was obtained in YPD medium containing 20 g/L glucose as compared to 0.206 h(-1) in YPX medium containing 20 g/L xylose. In media containing combinations of glucose and xylose, glucose was exhausted first followed by xylose. Ethanol production on pure xylose entered log phase during the 12-24h period as compared to the 4-10h for pure glucose based medium using 2% inoculum. When glucose was added to fermentation flasks which had been initiated on a pure xylose-based medium, the rate of xylose usage was reduced indicating cosubstrate inhibition of xylose consumption by glucose.  相似文献   

19.
A mutant of Saccharomyces cerevisiae, which forms large, multicellular flocs in liquid culture, rapidly fermented media containing high concentrations of glucose (100-180 g/L) in a continuous nonaerated tower fermentor at 30 degrees C. The fermentor operated continuously for seven months. Batch and tower fermentor data were fitted to a kinetic model incorporating linear ethanol inhibition and Monod dependence on glucose. Conversion, ethanol yield, and ethanol productivity were related to the apparent fermentation time for initial glucose concentrations of 130 and 180 g/L. Productivities of 8-12 g ethanol/L h were achieved through the yeast bed giving conversions exceeding 90% of the theoretical yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号