首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The stimulus for these experiments came from a recent seriesof papers which have suggested that the 14C technique may underestimateprimary production by as much as 10-fold. We evolved the followingstrategy to attempt to verify the 14C technique in nearshorewaters: (i) to examine the validity of in vitro (i.e., bottleincubation) measurements by comparing observed in situ oxygenchanges in a large enclosed natural ecosystem against thosedetermined in vitro and if no evidence of containment effectswere indicated, (ii) compare 14C and oxygen measurements insimultaneous in vitro incubations. The first step essentiallytests the containment problem, the second the physiologicaland calibration problems of the 14C technique. The first experimentwas run with nitrate as the main source of inorganic nitrogen,the second with ammonia. PQs for converting the 14C measurementsto oxygen values were calculated from the equation PQ = PQc+ 2/(C/NO3) where PQc is the ‘carbon PQ’ (takenas 1.25) and (C/NO3) is the molar carbon to nitrate assimilationratio. Although there appear to be some minor residual problemsin the interpretation of the data when nitrate was the dominantnitrogen source, the overriding conclusions were: first, thatthe close agreement between the changes in in situ and in vitrodissolved oxygen concentration during the photoperiod gave noevidence for any notable containment effect upon photosynthesis.Secondly, the in vitro rates of 14CO2-determined photosyntheticproduction and gross photosynthetic oxygen production agreed,within the precision of the two techniques. The experiment furtherdemonstrated the need to determine soluble as well as particulateorganic production and to pay attention to the potential effectof the nitrogen nutrient upon the PQ. Thus it was concludedthat our data give no evidence for marked errors in the 14C-techniqueof measuring primary organic production for coastal waters. Present address: Department of Marine Microbiology, Instituteof Botany, University of Gothenburg, Carl Skottsbergs Gata 22,S-413 19 Gothenburg, Sweden.  相似文献   

2.
Diurnal series of fluorescence and photosynthesis assays wereconducted in high altitude (3803 m), tropical (16°), LakeTiticaca (Peru/Bolivia). Near-surface diurnal thermoclines formedon typical days of high photon flux density (PFD, {small tilde}2000 µE m–2 s–1). In the depth range of diurnalstratification profiles of in vivo fluorescence, both without(Fa and with (Fb DCMU, exhibited a mean decrease of 64% frommorning to mid-day, but little change (mean increase of 1.5%)through the afternoon. Three times during the day surface, mid-depth(3–5 m) and deep (15–20 m) phytoplankton sampleswere incubated with H14CO3 under short (<2 h) exposuresto a range of in situ PFDs. Comparison of phytoplankton in differentsamples (ANOVA) showed identical photosynthetic response insunrise (isothermal) samples but a significant drop in surfaceand mid-depth photosynthesis at all PFDs during times of diurnalstratification. Similarly, both low-light () and light-saturated(P2 max photosynthetic parameters were lower in mid-day surfacesamples compared to deep samples. In addition, previously photoinhibitedsamples had a higher threshold intensity for photoinhibition,IT. These results, together with diurnal time series of fluorescencefrom in situ incubations, demonstrate that recovery from extendedepisodes of photoinhibition during diurnal stratification isslower than suggested by previous observations in vitro. Photosynthesisby near-surface phytoplankton is different in light increasingup to IT than light decreasing from IT. This effect can be modeledby reducing and Pmax as a function of the maximum photoinhibitingPFD in the diurnal light history. 1Present address: Division of Molecular Plant Biology, Universityof California, Berkeley, Berkeley, CA 94720, USA  相似文献   

3.
In vitrorates of gross and net oxygen production were measuredas a function of light intensity in some plankton communitiescollected from Bedford Basin, Nova Scotia, and in a monoclonalculture of Synechococcus. The rate of gross oxygen productionwas measured by a technique in which the stable oxygen isotope,18O, serves as a photosynthetic tracer Net oxygen productionwas measured by automated Winkler technique. The rate of communityrespiration in the light was then determined by the differencebetween gross and net rates of oxygen production. In the naturalpopulations examined, neither gross nor net oxygen productionrates were significantly inhibited at the highest light intensitymeasured (500–800 µE m–2 s–1) In a samplein which the dark respiration rate was small relative to themaximal rate of production [Pmax;sensu Platt et al (1980) JMar. Res., 38, 687–701] the rates of ‘light’respiration were 3 times greater. In two other communities,with high rates of dark respiration relative to Pmaxthe ratesof ‘light’ respiration were closer to rates of darkrespiration. In the Synechococcus clone, both gross and netoxygen production rates were inhibited at high light intensities.Rates of ‘light’ respiration were found to varyas a function of light intensity. The greatest rates of respirationwere measured in samples incubated at light intensities thatwere just saturating (100 µE m–2 s–1). Therates of 14C production were also measured as a function oflight intensity The photosynthetic quotients, based on 14C productionrates and gross oxygen production rates, average 1 9  相似文献   

4.
Primary production data measured by in situ (IS) and ‘simulated’in situ (SIS) incubations were compared. To minimize differencesbetween the two types of incubations, SIS experiments were conductedin temperature-controlled incubators in which the spectral distributionand irradiance were adjusted to approximate IS conditions. ISavailable irradiance (IIs) was computed from vertical attenuationof integrated surface irradiance. Vertical attenuation was estimatedusing a spectral irradiance model, validated by measured profilesof the vertical attenuation coefficient. IS incubations werecarried out using two methods. The first involved deploymentof bottles on a drifting array for whole-day (dawn to dusk)incubations. The second method employed an autonomous submersibleincubation device that performed short term (<1 h) incubationsat multiple depths. Differences between whole-day IS and SISincubation estimates were attributed partially to differencesbetween IIS and SIS-available irradiance (ISIS). Photosynthesis-irradiance(P-I) properties of IS and SIS populations from the whole-dayincubations were not significantly different. P-I propertiesof the short-term IS and SIS populations were significantlydifferent, although estimates of PB (mg C mg Chl–1 h–1)from contemporaneous IS and SIS incubations did not differ by>40%. Integrated water-column primary production (IPP) estimatedusing P-I models derived from SIS data were within 15% of ISestimates of IPP.  相似文献   

5.
Nutrient-sufficient cultures of a Trondheimsfjord (Norway) cloneof the marine centric diatom Skeleionema costatum (Grev.) Clevewere grown at 75 µmol m–2 s–1 and 15C at24 and 12 h daylength to study diurnal variations and the effectof daylength on pigment and chemical composition, photosyntheticparameters, dark respiration rates and scaled fluorescence excitationspectra (F), the latter used as estimates for the absorptionof energy available to Photosystem II. Specific growth rateswere 1.06 and 0.56 day in 24 and 12 h daylength, respectively,while dark respiration rates were generally 85% of the net growthrate. The Chla-normalized photosynthetic coefficients PBm andaB were {small tilde}20–25% higher in continuous lightthan at 12 h daylength, while the Chla:C ratio was {small tilde}15%lower (0.051 versus 0.061 w:w). Thus, the carbon-normalizedcoefficients Pcm and ac were <11% lower at 24 h than at 12h daylength. The maximum quantum yield max, the Chla:C ratioand F differed negligibly, as did the light saturation indexlk, the N:C ratio and the ratios Chlc:Chla and Fucoxanthin:Chla. PBm and lk did not exhibit diurnal variations at 24 hdaylength, and varied within 23% of the daily mean at 12 h daylength.Predictions of the daily gross photosynthetic rate based ondata for a given time of the day should thus not be >10%in error relative to an integrated value based on several datasets collected through 24 h. max was 0.084–0.117 mol O2(mol photons) for gross oxygen evolution. However, ifused in mathematical models for predicting the gross and netgrowth rates (i.e. the gross and net carbon turnover rates),‘practical’ values of 0.076 and 0.040 g-at C (molphotons), respectively, should be employed. Correspondingly,values for aB and PBm should be adjusted pro rata. 1Present address: College of Marine Studies, Sjmannsveien 27,N-6008 lesund, Norway  相似文献   

6.
Plankton gross production, net community production and darkcommunity respiration were measured at coastal sites aroundthe island of Milos, Aegean Sea, during June and September 1996and June 1997. Sampling sites were chosen to include those withand without visible signs of hydrothermal activity. Planktongross production ranged from undetectable (<0.3 mmol O2 m-3day-1) to 3 mmol O2 m-3 day-1; respiration rates ranged from1 to 6 mmol O2 m-3 day-1. No significant difference was foundbetween gross production or respiration rates measured at hydrothermallyactive areas and gross production or respiration rates measuredat non-venting areas. The dissolved inorganic carbon concentrationvaried by ~200 mmol C m-3 between venting and non-venting sites.Temperature had a pronounced stimulatory effect on the rateof plankton dark community respiration. The Topt for planktondark community respiration always lay above the highest incubationtemperature of 30°C (i.e. >6°C above in situ temperature).Temperature had less of a stimulatory effect on the rate ofgross production.  相似文献   

7.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

8.
Three sets of comparisons of net and gross inorganic carbonassimilation and 14C uptake were made with an axenic cultureof Skdetonema costatum. The comparisons showed that in the physiologicalwindow studied (10–20% of the intrinsic generation timeand gross photosynthesis/respiration ratios of 2–3), 14Cuptake into the paniculate plus the dissolved fractions approximatedto net photosynthesis. Rate constants derived from the chemicallydetermined changes were used to parameterize models that accountedfor the respiration of photosynthetic products and for the recyclingof respiratory CO14. The conclusion drawn was that over thetime scale studied, the 14C technique was measuring net photosynthesis,consistent with essentially 100% recycling of respiratory CO2.The study has shown that we now possess the basis to make arigorous analysis of net, gross CC4 fixation and net 14C uptake,and forms the first step in the development of algorithms forthe interpretation of 14C field observations.  相似文献   

9.
The experimentally measured oxygen consumption rate by the cladoceran,Ceriodaphnia dubia, showed a linear increase between 5 and 20°C.Oxygen consumption rates of C. dubia were estimated in situfrom respiratory electron transport system (ETS) activity inLake Rotongaio during summer stratification and winter mixing.Oxygen consumption was 0.002 µl O2 animal–1 h–1in the hypolimnion and 0.076 µl O2 animal–1 h–1in the epilimnion during stratification. Implications of respiredoxygen for metabolic carbon requirements are discussed.  相似文献   

10.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

11.
The effects of elevated carbon dioxide (CO2 and ozone (O3) onsoybean (Glycine max (L.) Merr.] photosynthesis and photorespiration-relatedparameters were determined periodically during the growing seasonby measurements of gas exchange, photorespiratory enzyme activitiesand amino acid levels. Plants were treated in open-top fieldchambers from emergence to harvest maturity with seasonal meanconcentrations of either 364 or 726 µmol mol–1 CO2in combination with either 19 or 73 nmol mol–1 O3 (12h daily averages). On average at growth CO2 concentrations,net photosynthesis (A) increased 56% and photorespiration decreased36% in terminal mainstem leaves with CO2 enrichment. Net photosynthesisand photorespiration were suppressed 30% and 41%, respectively,by elevated O3 during late reproductive growth in the ambientCO2 treatment, but not in the elevated CO2 treatment. The ratioof photorespiration to A at growth CO2 was decreased 61% byelevated CO2 There was no statistically significant effect ofelevated O3 on the ratio of photorespiration to A. Activitiesof glycolate oxidase, hydroxypyruvate reductase and catalasewere decreased 10–25% by elevated CO2 and by 46–66%by elevated O3 at late reproductive growth. The treatments hadno significant effect on total amino acid or glycine levels,although serine concentration was lower in the elevated CO2and O3 treatments at several sampling dates. The inhibitoryeffects of elevated O3 on photorespiration-related parameterswere generally commensurate with the O3-induced decline in A.The results suggest that elevated CO2 could promote productivityboth through increased photoassimilation and suppressed photorespiration. Key words: Photorespiration, CO2-enrichment, ozone, climate change, air pollution  相似文献   

12.
Measuring the Canopy Net Photosynthesis of Glasshouse Crops   总被引:3,自引:0,他引:3  
A null balance method is described for measuring net photosynthesisof mature canopies of cucumber and other protected crops overperiods of 10 min in a single-span glasshouse (c. 9m x 18m inarea). Accuracy of control of the CO2 concentration in the greenhouseatmosphere is within ±10 vpm of the normal ambient level(c. 350 vpm). The amounts of CO2 used in canopy net photosynthesisare measured with linear mass flowmeters accurate to within±0.80g. The total errors incurred in measuring canopynet photosynthesis at an ambient CO2 level are estimated tobe of the order of ± 1·2% in bright light (350W m–2, PAR)and ±3·6% in dull light (100W m–2, PAR). Measurements of the rates of net photosynthesis of a maturecanopy of a cucumber crop were made at near-ambient CO2 concentrationsover a range (0–350 W m–2) of natural light fluxdensities. A model of light absorption and photosynthesis applicableto row crops was used to obtain a net photosynthesis versuslight response curve for the cucumber crop. At a light fluxdensity of 350 W m–2 the fitted value of canopy net photosynthesiswas 2.65 mg CO2 m–2s–1 (equivalent to over 95 kgCO2 ha–1h–1). The results are discussed in relationto the need for CO2 supplements to avoid depletion in both ventilatedand unventilated glasshouses during late spring and summer. Key words: Glasshouse crops, cucumber, measurement, canopy photosynthesis, light, CO2  相似文献   

13.
Community respiration (R) was determined in Bransfield Straitfrom oxygen changes in water samples incubated in borosilicatebottles maintained at in situ temperature. The respiratory electrontransport system (ETS) activity of seawater communities wasalso measured from the same samples. Both data sets were relatedby the regression equation: log R (mg O2 m–3 day–1)=0.462+0.730xlogETS activity mg O2 m–3 day–1) (r=0.80, n=23). Fromthis equation and 37 ETS activity depth profiles, we calculatedthe integrated (0–100 m) community respiration as beingin the range 1.2–4.5 g O2 m–2 day–1 (mean=2.2).These values do not differ significantly from other publishedresults for the Arctic and Antarctic Oceans. Assuming a respiratoryquotient of unity, the areal respiration ranges between 0.45and 1.69 g C m–2 day–1 (mean=0.8). This would representan important sink for the primary production reported for BransStrait. The spatial distribution of community respiration showedhigher values associated with the warmer and phytoplankton-richwaters outflowing from Gerlache Strait into Bransfield Strait,and with the front that separates Bellingshausen Sea watersfrom Weddell Sea waters. We suggest that this pattern of distributionmay be related to the transport of organic matter by the BransfieldCurrent along the front.  相似文献   

14.
Experiments with simulated swards of perennial ryegrass (Loliumperenne L.) grown in flowing nutrient solution with NO3- heldat 0.1 mg N I–1 show that the rate of NO3- uptake wasrelated to diurnal, day-to-day, and seasonal changes in radiation.In summer the diurnal variation in NO3-uptake ranged from 25to 50 mg N m–2 h–1 and the day-to-day variationranged from 500 to 1500 mg N m–2 d–1. Mean dailyrates of uptake over 12 d periods in summer and in winter averaged908 and 44 mg N m–2, respectively. The pattern of NO3-uptake followed that of CO2 flux with the maximum rate of theformer occurring 5 or 6 h after the maximum CO2 influx. Afterdefoliation, NO3- uptake was severely curtailed for 2 d concomitantwith a very small influx of CO2. Analysis of the changes thatoccurred in the rate of NO3- uptake immediately after the switchingon or off of artificial light suggests that two reversible processesmay be involved in the relation between NO3-uptake and radiation,one with a longer and the other with a shorter time constant.  相似文献   

15.
Exposure to atmospheric conditions which promote photorespirationstrongly inhibits photosynthesis in a mutant of Arabidopsislacking mitochondrial serine transhydroxymethylase activity,and glycine accumulates as a stable end-product of photorespiratorycarbon and nitrogen flow. By providing exogenous serine andammonia to leaves of the mutant, wild-type photosynthesis ratescan be temporarily maintained in the absence of photorespiratoryCO2 evolution. In these circumstances, the rate of glycine accumulationprovides a direct measure of photorespiratory flux which isnot complicated by the efflux and refixation of photorespiredCO2, the dilution of radioactive label by endogenous metabolicpools, or non-specific effects of metabolic inhibitors. At thestandard atmospheric concentration of CO2, the rate of glycineaccumulation in the mutant was proportional to the oxygen concentration,amounting to 53% of the rate of gross CO2-fixation at 21% O2.At normal levels of O2, glycine accumulation was maximal atabout 475 µl CO21–1 and was reduced at higher orlower CO2 concentrations, being almost abolished at 3000µ1CO21–1. These observations are discussed in the contextof a model of photorespiration based on the properties of ribulose1, 5-bisphosphate carboxylase/oxygenase, and in relation tothe results of previous attempts to measure photorespiration.Preliminary evidence from 14CO2-labelling experiments whichsuggests a non-photorespiratory pathway of serine synthesisis also presented. Key words: Arabidopsis mutant, Photorespiration, Serine transhydroxymethylase  相似文献   

16.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

17.
In "air-grown" Chroomonas sp. cells, low concentrations of DCMU(less than 0.1 µM) could prevent the inhibition of 14CO2fixation by anaerobiosis under light-saturating conditions (morethan 40 W.m–2), with phenazine methosulfate showing asimilar effect. Antimycin A, carbonyl cyanide m-chlorophenylhydrazone(CCCP), and N,N'-dicyclohexylcarbodiimide strongly inhibitedanaerobic photosynthesis at concentrations which did not significantlyinhibit the rate under 2% O2 at high light intensity (200 W.m–2),although 0.2 µM CCCP stimulated the rate under 2% O2 tosome extent. On the other hand, KCN inhibited the rate muchmore strongly under 2% O2 than N2, although it inhibited therate very strongly at concentrations above 5 µM both underN2 and 2% O2. These results suggest that the inhibition of photosynthetic14CO2 fixation by anaerobiosis in this alga result from ATPdeficiency caused by over-reduction of electron carriers ofthe cyclic electron flow and that oxygen can prevent the over-reduction.Cyclic electron flow seems to be necessary to provide additionalATP for CO2 reduction under anaerobic conditions, although itseems to be less necessary under aerobic conditions. (Received July 21, 1983; Accepted January 23, 1984)  相似文献   

18.
The CO2 compensation point at 25 °C and 250 µEinsteinsm–2 s–1 wasmeasured for 27 bryo-phyte species, andwas found to be in the range of 45–160 µl CO2 I–1air. Under the same conditions Zea mays gave a value of 11 µlI–1 and Horde um vulgare 76 µI–1. The rate of loss of photosyntheticallyfixed 14CO2 in the light and dark in six bryophytes (three mosses,two leafy liverworts, one thalloid liverwort) was determinedin CO2-free air and 100% O2. The rate of 14CO2 evolution inthe light was less than that in the dark in CL2-free air, butin 100% O2 the rate in the light increased, so that in all butthe leafy liverworts it was greater than that in the dark. Raisingthe temperature tended to increase the rate of 14CO2 evolutioninto CO2-free air both in the light and dark, so that the light/dark(L/D) ratio did not greatly vary. The lower rate of loss of14CO2 in the light compared tothe dark could be due to partialinhibition of ‘dark respiration’ reactions in thelight, a low rate of glycolate synthesis and oxidation, or partialreassimilation of the 14CO2 produced, or a combination of someor all of these factors.  相似文献   

19.
The CO2-, H2O- and 16O2/18O2 isotopic-gas exchange and the fluorescencequenching by attached leaves of the wild-type and of the phytochrome-deficienttomato aurea mutant was compared in relation to water stressand the photon fluence rate. The chlorophyll content of aurealeaves was reduced and the ultra-structure of the chloroplastswas altered. Nevertheless, the maximum rate of net CO2 uptakein air by the yellow-green leaves of the aurea mutant was similarto that by the dark-green wild-type leaves. However, less O2was produced by the leaves of the aurea mutant than by leavesof the wild-type. This result indicates a reduced rate of photosyntheticelectron flux in aurea mutant leaves. No difference in bothphotochemical and non-photochemical fluorescence quenching wasfound between wild-type and aurea mutant leaves. Water stresswas correlated with a reversible decrease in the rates of bothnet CO2 uptake and transpiration by wild-type and aurea mutantleaves. The rate of gross 16O2 evolution by both wild-type andaurea mutant leaves was fairly unaffected by water stress. Thisresult shows that in both wild-type and aurea leaves, the photochemicalprocesses are highly resistant to water stress. The rate ofgross 18O2 uptake by wild-type leaves increased during waterstress when the photon fluence rate was high. Under the sameconditions, the rate of gross 18O2 uptake by aurea mutant leavesremained unchanged. The physiological significane of this differencewith respect to the (presumed) importance of oxygen reductionin photoprotection is discussed. Key words: Water stress, gas exchange, fluorescence quenching, Lycopersicon esculentum, mutant (tomato, aurea), energy dissipation  相似文献   

20.
A study was made of the incorporation of 14C by intact leavesof Coffea arabica (cultivars Mundo Novo, Catuai, 1130–13,and H 6586–2) and Coffea canephora (cultivar Guarini)supplied with gas mixtures containing 14CO2 under controlledconditions. Samples of the leaves were combusted and the 14Cin the CO2 produced measured using a liquid scintillation counter.The results were used to estimate photosynthetic rates. Theeffects of changing the partial pressures of O2 and CO2 on thephotosynthetic rate were studied and estimates made of the CO2compensation point and photorespiration. The data obtained show differences between the mean net photosyntheticrates of the C. arabica cultivars (6·14 mg CO2 dm–2h–1) and the mean rate for the C. canephora cultivar (3·96mg CO2 dm–2 h–1). The cultivar of the latter speciesphotorespired more rapidly than the cultivar Catuai of C. arabica.Rates of photosynthesis in coffee measured using the 14CO2 methodwere similar to rates obtained by others using an infrared gasanalyser. The 14CO2 method proved to be reliable for photosyntheticmeasurements and the apparatus is suitable for use in fieldconditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号