首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiply peptidase-deficient mutant strains of Salmonella typhimurium fail to carry out normal protein degradation during starvation for a carbon source. In these mutants, the extent of protein breakdown during starvation is about fourfold less than in the wild type. The products of protein breakdown in the mutant are mainly small, trichloroacetic acid-soluble peptides, not free amino acids as in the wild type. The carbon-starved mutant strain produces only about one thirtieth as much free amino acid from protein as the wild type. As a result, protein synthesis during starvation is reduced in the mutant compared to the wild type and the mutant strain shows a greatly prolonged lag phase after a nutritional shift-down.  相似文献   

2.
The previously suggested roles of protein synthesis and tRNA aminoacylation in the regulation of intracellular protein breakdown were examined in strains of E. coli temperature-sensitive for aminoacyl-tRNA synthetases. Direct measurements of tRNA aminoacylation show no correlation between the degree of tRNA charging and the rate of protein breakdown. Protein breakdown was accelerated by transfer from 30°C to 42°C to about the same degree in temperature-sensitive mutants as in related normal strains. Deprivation of inorganic phosphate at the high temperature stimulated further protein breakdown in normal, but not in temperature-sensitive strains. It is concluded that the regulation of protein breakdown requires concomitant protein synthesis and is not influenced by the level of aminoacylation of tRNA.  相似文献   

3.
The degradation of the storage carbohydrate, paramylum, is induced by light in wild-type Euglena gracilis Klebs var. bacillaris Pringsheim and in a mutant, W3BUL, which lacks detectable plastid DNA. Treatment of wild type with cycloheximide in the dark produces 60% as much paramylum breakdown as light, whereas treatment with levulinic acid in the dark yields a slightly greater response than light. Both cycloheximide and levulinic acid produce a greater paramylum breakdown in the light than they do in the dark. Treatment of W3BUL with levulinic acid in darkness produces a larger paramylum degradation than light, with values similar to wild type in the light. Treatment of W3BUL with cycloheximide induces paramylum degradation in darkness, and as with wild type, light is slightly stimulatory in the presence of both cycloheximide or levulinic acid. Streptomycin brings about only a very small amount of paramylum breakdown in the dark and only slightly inhibits breakdown in the light. Thus paramylum breakdown induced by light does not require the synthesis of proteins on cytoplasmic or plastid ribosomes. A model which explains these results postulates the existence of a protein which inhibits paramylum breakdown. When the synthesis of this protein is prevented either by light, cycloheximide, or by levulinic acid acting as a regulatory analog of delta amino levulinic acid, paramylum breakdown takes place. Because levulinic acid is a better inducer than light in W3BUL, W3BUL may not be able to form as much delta amino levulinic acid in light as wild type. The small amount of induction by streptomycin is viewed as a secondary regulatory effect attributable to interference with plastid protein synthesis which affects regulatory signals from the plastid to the rest of the cell.  相似文献   

4.
In the absence of serum and amino acids, cultured Chinese Hamster Ovary cells released to the medium two thirds of the leucine produced by protein degradation. Because protein synthesis requires all the amino acids, the loss of leucine implies incomplete reincorporation of the other amino acids as well. Leupeptin (0.45 mg/ml) and chloroquine (up to 40 microM) inhibited protein breakdown by 21 and up to 41%, respectively, and resulted in proportional decreases in protein synthesis. Chloroquine abolished the stimulation of protein breakdown by amino acid deprivation. From the values of protein synthesis and leucine output with and without chloroquine, it is estimated that the stimulation of protein degradation not only permitted continuing protein synthesis but also increased amino acid output. In the presence of serum or amino acids protein breakdown was slower than in their absence and less sensitive to inhibition by chloroquine, but proportional effects on synthesis and degradation were still observed. It is suggested that protein degradation may be necessary for the maintenance of optimum intracellular concentrations of amino acids even in the presence of extracellular amino acids.  相似文献   

5.
The effects of growth-suppressing and muscle-wasting treatments on muscle protein turnover and amino acid concentrations were determined in vivo. All treatments depressed protein synthesis and some treatments depressed protein breakdown. Only prolonged starvation increased protein breakdown. Muscle protein mass is regulated primarily through alterations in protein synthesis in all except emergency conditions. The increased concentrations of the branched-chain amino acids indicate that they are unlikely to be involved in this regulation.  相似文献   

6.
7.
Insulin promotes muscle anabolism, but it is still unclear whether it stimulates muscle protein synthesis in humans. We hypothesized that insulin can increase muscle protein synthesis only if it increases muscle amino acid availability. We measured muscle protein and amino acid metabolism using stable-isotope methodologies in 19 young healthy subjects at baseline and during insulin infusion in one leg at low (LD, 0.05), intermediate (ID, 0.15), or high (HD, 0.30 mUxmin(-1)x100 ml(-1)) doses. Insulin was infused locally to induce muscle hyperinsulinemia within the physiological range while minimizing the systemic effects. Protein and amino acid kinetics across the leg were assessed using stable isotopes and muscle biopsies. The LD did not affect phenylalanine delivery to the muscle (-9 +/- 18% change over baseline), muscle protein synthesis (16 +/- 26%), breakdown, or net balance. The ID increased (P < 0.05) phenylalanine delivery (+63 +/- 38%), muscle protein synthesis (+157 +/- 54%), and net protein balance, with no change in breakdown. The HD did not change phenylalanine delivery (+12 +/- 11%) or muscle protein synthesis (+9 +/- 19%), and reduced muscle protein breakdown (-17 +/- 15%), thus improving net muscle protein balance but to a lesser degree than the ID. Changes in muscle protein synthesis were strongly associated with changes in muscle blood flow and phenylalanine delivery and availability. In conclusion, physiological hyperinsulinemia promotes muscle protein synthesis as long as it concomitantly increases muscle blood flow, amino acid delivery and availability.  相似文献   

8.
The fractional rates of synthesis and breakdown of myosin and actin in skeletal muscle of younn adult male rats were measured during 2 weeks of ad libitum feeding of a protein-free diet, and 8 days of refeeding with an adequate protein diet. Daily urinary excretion of Nτ-Methylhistidine (3-methylhistidine) by the Nτ-methylhistidine pool of the body gave the fractional breakdown rate of the myosin-actin pool. The fractional synthesis rate of the myosin-actin pool was calculated from the fractional breakdown rate and the size of Nτ-methylhistidine pool in the body. The feeding of the protein-free diet resulted in a decreased in body weight and a decrease in daily urinary excretion of Nτ-methylhistidine. Refeeding caused an increase in body weight and a progressive increase in daily urinary excretion of Nτ-methylhistidine. At the start of the experiment, the fractional breakdown rate of the myosin-actin pool was 4% per day and with prolonged protein depletion, the rate decreased to 1.25% per day. The fractional synthesis rate also decreased more rapidly than the breakdown rate. On refeeding for one day with an adequate protein diet, the fractional synthesis rate increased from 0.75 to 5.75% per day. Accumulation of skeletal muscle protein by refeeding was accompanied by a difference between the faster rate of synthesis and slower rate of breakdown even though the fractional breakdown rate increased during the rehabilitation period.  相似文献   

9.
Cell division by strains ofEscherichia coli andSalmonella typhimurium is inhibited by 5-diazouracil (5-DU). Division recovers in the presence of the inhibitor after a period which is temperature-dependent. Recovery is probably due to breakdown of 5-DU and the rate of this breakdown is apparently increased at alkaline pH. Growth with 5-DU caused only a slight reduction in the rate of murein synthesis and no alteration in the properties or composition of membranes ofS. typhimurium. The agent caused chaining inStreptococcus fecalis and inhibition of the penicillin-induced lysis ofS. typhimurium. These effects may have been due to direct inhibition of lysin activity but an indirect effect seems more likely. The most marked effect of 5-DU onS. typhimurium was to cause a transient inhibition of DNA synthesis. Since 5-DU did not stop uncoupled cell division (i.e. division occurring independently of DNA replication) and sincelon? strains were more sensitive to 5-DU thanlon+ strains, it was concluded that 5-DU acts on cell division via an inhibitory effect on DNA replication.  相似文献   

10.
Starvation of Escherichia coli for potassium, phosphate, or magnesium ions leads to a reversible increase in the rate of protein degradation and an inhibition of ribonucleic acid (RNA) synthesis. In cells deprived of potassium, the breakdown of the more stable cell proteins increased two- to threefold, whereas the hydrolysis of short-lived proteins, both normal ones and analog-containing polypeptides, did not change. The mechanisms initiating the enhancement of proteolysis during starvation for these ions were examined. Upon starvation for amino acids or amino acyl-transfer RNA (tRNA), protein breakdown increases in relA+ (but not relA) cells as a result of the rapid synthesis of guanosine-5'-diphosphate-3'-diphosphate (ppGpp). However, a lack of amino acyl-tRNA does not appear to be responsible for the increased protein breakdown in cells starved for inorganic ions, since protein breakdown increased in the absence of these ions in both relA+ and relA cultures, and since a large excess of amino acids did not affect this response. In bacteria in which energy production is restricted, ppGpp levels also rise, and protein breakdown increases. The ion-deprived cultures did show a 40 to 75% reduction in adenosine-5'-triphosphate levels,l similar to that seen upon glucose starvation. However, this decrease in ATP content does not appear to cause the increase in protein breakdown or lead to an accumulation of ppGpp. No consistent change in intracellular ppGpp levels was found in relA+ or relA cells starved for these ions. In addition, in relX mutants, removal of these ions led to accelerated protein degradation even though relX cells are unable to increase ppGpp levels or proteolysis when deprived of a carbon source. In the potassium-, phosphate-, and magnesium-deprived cultures, the addition of choramphenicol or tetracycline caused a reduction in protein breakdown toward basal levels. Such findings, however, do not indicate that protein synthesis is essential for the enhancement of protein degradation, since blockage of protein synthesis by inactivation of a temperature-sensitive valyl-tRNA synthetase did not restore protein catabolism to basal levels. These various results and related studies suggest that the mechanism for increased protein catabolism on starvation for inorganic ions differs from that occurring upon amino acid or arbon deprivation and probably involves an enhanced susceptibility of various cell proteins (especially ribosomal proteins) to proteolysis.  相似文献   

11.
Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.  相似文献   

12.
The modes of action of insulin and of inhibitors of protein synthesis on the degradation of labeled cellular proteins have been studied in cultured hepatoma (HTC) cells. Protein breakdown is accelerated upon the deprivation of serum (normally present in the culture medium), and this enhancement is inhibited by either insulin or cycloheximide. An exception is a limited class of rapidly turning over cellular proteins, the degradation of which is not influenced by insulin or cycloheximide. Alternative hypotheses to explain the relationship of protein synthesis to the regulation of protein breakdown, viz., control by the levels of precursors of protein synthesis, regulation by the state of the ribosome cycle, or requirement for a product of protein synthesis, have been examined. Protein breakdown was not influenced by amino acid deprivation, and measurements of valyl-tRNA levels in HTC cells subjected to various experimental conditions showed no correlation between the levels of charged tRNAVal and the rates of protein degradation. Three different inhibitors of protein synthesis (puromycin, pactamycin, and cycloheximide) suppressed enhanced protein breakdown in a similar fashion. A direct relationship was found between the respective potencies of these drugs to inhibit protein synthesis and to block enhanced protein breakdown. When cycloheximide and insulin were added following a prior incubation of HTC cells in a serum-free medium, protein breakdown was maximally suppressed within 15-30 min. Actinomycin D inhibited protein breakdown only after a time lag of about 90 min. It is suggested that the regulation of protein breakdown in hepatoma cells requires the continuous formation of a product of protein synthesis, in a manner analogous to the mode of the control of this process in bacteria.  相似文献   

13.
The hns gene is a member of the cold-shock regulon, indicating that the nucleoid-associated, DNA-binding protein H-NS plays an important role in the adaptation of Escherichia coli to low temperatures. We show here that the ability to cope efficiently with a cold environment (12°C and 25°C) is strongly impaired in E. coli strains carrying hns mutations. Growth inhibition is much more pronounced in strains carrying the hns-206 allele (an ampicillin resistance cassette inserted after codon 37) than in those carrying the hns-205 mutation (a Tn10 insertion located in codon 93). A protein fragment (H-NS*) is synthesized in strains carrying the hns-205::Tn10 mutation, suggesting that this truncated polypeptide is partially functional in the cold adaptation process. Analysis of the growth properties of strains harbouring four different low-copy-number plasmid-encoded hns genes that result in the production of C-terminally truncated H-NS proteins supports this proposal. H-NS* proteins composed of 133, 117 or 94 amino-terminal amino acids partially complemented the severe cold-sensitive growth phenotype of the hns-206 mutant. In contrast, synthesis of a truncated H-NS protein with only 75 amino-terminal amino acids was insufficient to restore growth at low temperature.  相似文献   

14.
Protein obtained from several strains of Escherichia coli grown in the presence of [3,3′-14C]cystine contained the radiolabel in nearly all the other amino acids, suggesting catabolism of cysteine to pyruvic acid. Utilization in amino acid synthesis of the pyruvate thus generated can be blocked by growing the bacteria in a medium specifically enriched with most of the naturally occurring amino acids. Cysteine that is incorporated intact is diluted by de novo synthesis at low cystine concentrations; also, it was found that E. coli can use the sulfur of methionine for cysteine biosynthesis. Both of these latter two processes can be prevented by supplying an excess of exogenous cystine. This regiment leads to protein that is highly specifically labeled in the cysteine residues, with a minor amount (20–25%) of the label also appearing in alanine residues. Although this strategy was developed expressly for cysteine, it may be useful for incorporating other labeled amino acids that are also readily catabolized.  相似文献   

15.
Regulation of Intracellular Proteolysis in Escherichia coli   总被引:11,自引:6,他引:5       下载免费PDF全文
Individual nitrogenous metabolites have been examined as regulating agents for the breakdown of intracellular proteins in Escherichia coli. Generally, NH(4) (+) is the most effective regulator. Its depletion progressively increases the basal proteolytic rate to maximum in most strains when the doubling time is increased to 2 h. In E. coli 9723, the rate is further increased at longer doubling times. Amino acids have individual effects on intracellular proteolysis. The basal rate in amino acid-requiring auxotrophs of E. coli 9723 is stimulated weakly by starvation for histidine, tryptophan, or tyrosine, moderately by four other amino acid depletions, and more strongly by eight others. The degree of stimulation roughly correlates with the frequency of the amino acid in the cell proteins. Amino acid analogues that incorporate extensively into protein generally slightly inhibit intracellular proteolysis, except for selenomethionine, which is slightly stimulatory. Metabolic inhibitors were studied at graded concentrations. Chloramphenicol inhibits the basal level of intracellular proteolysis when protein synthesis is slightly or moderately inhibited, and stimulates proteolysis slightly at higher levels. Graded inhibition of ribonucleic acid synthesis with rifampin progressively stimulates intracellular proteolysis. Uracil depletion is also stimulatory. Inhibition of deoxyribonucleic acid synthesis with mitomycin C or by thymine starvation slightly inhibits intracellular proteolysis. Intracellular proteolysis is postulated to be regulated primarily by active ribosomal function. At 43 to 45 C, intracellular proteolysis becomes maximally induced and unresponsive to normal regulatory control by metabolites. Most regulation is directed towards the breakdown of the more stable cell proteins. Total proteolysis in all cell proteins is no more than doubled by the most effective conditions of starvation.  相似文献   

16.
We have examined the effect of a hemodialysis-induced 40% reduction in plasma amino acid concentrations on rates of muscle protein synthesis and breakdown in normal swine. Muscle protein kinetics were measured by tracer methodology using [(2)H(5)]phenylalanine and [1-(13)C]leucine and analysis of femoral arterial and venous samples and tissue biopsies. Net amino acid release by muscle was accelerated during dialysis. Phenylalanine utilization for muscle protein synthesis was reduced from the basal value of 45 +/- 8 to 25 +/- 6 nmol x min(-1) x 100 ml leg(-1) between 30 and 60 min after start of dialysis and was stimulated when amino acids were replaced while dialysis continued. Muscle protein breakdown was unchanged. The signal for changes in synthesis appeared to be changes in plasma amino acid concentrations, as intramuscular concentrations remained constant throughout. The changes in muscle protein synthesis were accompanied by a reduction or stimulation, respectively, in the guanine nucleotide exchange activity of eukaryotic initiation factor (eIF)2B following hypoaminoacidemia vs. amino acid replacement. We conclude that a reduction in plasma amino acid concentrations below the normal basal value signals an inhibition of muscle protein synthesis and that corresponding changes in eIF2B activity suggest a possible role in mediating the response.  相似文献   

17.
The time course of synthesis and breakdown of various macromolecules has been compared for sporulating (a/alpha) and nonsporulating (a/a and alpha/alpha) yeast cells transferred to potassium acetate sporulation medium. Both types of cells incorporate label into ribonucleic acid and protein. The gel electrophoresis patterns of proteins synthesized in sporulation medium are identical for sporulating and nonsporulating diploids; both are different from electropherograms of vegetative cells. Sporulating and nonsporulating strains differ with respect to deoxyribonucleic acid synthesis; no deoxyribonucleic acid is synthesized in the latter case, whereas the deoxyribonucleic acid complement is doubled in the former. Glycogen breakdown occurs only in sporulating strains. Breakdown of preexisting vegetative ribonucleic acid and protein molecules occurs much more extensively in sporulating than in nonsporulating cells. A timetable of these data is presented.  相似文献   

18.
The breakdown of triglycerides and proteins in the endosperm of Euphorbia lathyris was assayed in a 14 day germination period. Six days after germination, the average daily production was 2.7 μmol of amino acids. Arginine, glutamine, asparagine and glutamic acid accounted for 53% of the total amino acids. Excised cotyledons with 1 cm hypocotyls were used for amino acid uptake and their involvement in terpenoid synthesis was studied. Glutamine and aspartate were hardly involved in apolar lipid synthesis. Leucine, isoleucine, valine and threonine were mainly incorporated into the triterpenes in the laticifers. Alanine and serine were also involved in phytosterol synthesis in the adjacent tissue. In the 14 day germination period, ca3% of the daily yield of latex triterpenes may be synthesized from a variety of amino acids.  相似文献   

19.
Cycloheximide, ethionine,p-fluorophenylalanine, 6-azauracil, 5-diazouracil and vanillin, applied at relatively high concentrations, retarded the yellowing of kale (Brassica oleracea L. var.acephala) leaf discs in darkness, and stimulated it in light. All the compounds inhibited protein synthesis and retarded protein breakdown. Cycloheximide,p-fluorophenylalanine, diazouracil and vanillin also inhibited the incorporation of uracil-14C into RNA of senescing discs. Abscisic acid and 2-chloroethylphosphonic acid accelerated yellowing both in darkness and in light and stimulated the protein breakdown in senescing discs. Abscisic acid inhibited the chlorophyll, protein and RNA synthesis in detached, greening cucumber cotyledons. There was no direct correlation between the activity of a given compound as an inhibitor of yellowing in darkness, and the degree of inhibition of RNA synthesis. The arrest of yellowing in darkness is possibly a consequence of the retarded rate of protein breakdown. Yellowing in light, on the contrary, is dependent on the actual rate of protein synthesis.  相似文献   

20.
Loss of muscle mass usually characterizes different pathologies (sepsis, cancer, trauma) and also occurs during normal aging. One reason for muscle wasting relates to a decrease in food intake. This study addressed the role of leucine as a regulator of protein breakdown in mouse C2C12 myotubes and aimed to determine which cellular responses regulate the process. Determination of the rate of protein breakdown indicated that leucine is one key regulator of this process in myotubes because starvation for this amino acid is responsible for 30-40% of the total increase generated by total amino acid starvation. Leucine restriction rapidly accelerates the rate of protein breakdown (+11 to 15% (p < 0.001) after 1 h of starvation) in a dose-dependent manner. By using various inhibitors, evidence is provided that acceleration of protein catabolism results mainly from an induction of autophagy, activation of lysosome-dependent proteolysis, without modification of mRNA levels encoding the lysosomal cathepsins B, L, or D. Those results suggest that autophagy is an essential cellular response for increasing protein breakdown in muscle following food deprivation. Induction of autophagy precedes a decrease in global protein synthesis (-20% to -30% (p < 0.001)) that occurs after 3 h of leucine starvation. Inhibition of the mammalian target of rapamycin (mTOR) activity does not abolish the effect of leucine starvation and the level of phosphorylated ribosomal S6 protein is not affected by leucine withdrawal. These latter data provide clear evidence that the mTOR signaling pathway is not involved in the mediation of leucine effects on both protein synthesis and degradation in C2C12 myotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号