首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bradyrhizobium japonicum cytochrome c 550, encoded by cycA , has been previously suggested to play a role in denitrification, the respiratory reduction of nitrate to dinitrogen. However, the exact role of this cytochrome in the denitrification process is unknown. This study shows that cytochrome c 550 is involved in electron transfer to the copper-containing nitrite reductase of B. japonicum , as revealed by the inability of a cycA mutant strain to consume nitrite and, consequently, to grow under denitrifying conditions with nitrite as the electron acceptor. Mutation of cycA had no apparent effect on methylviologen-dependent nitrite reductase activity. However, succinate-dependent nitrite reduction was largely inhibited, suggesting that c 550 is the in vivo electron donor to copper-containing nitrite reductase. In addition, this study demonstrates that a cytochrome c 550 mutation has a negative effect on expression of the periplasmic nitrate reductase. This phenotype can be rescued by extending the growth period of the cells. A model is proposed whereby a mutation in cycA reduces expression of the cbb 3-type oxidase, affecting oxygen consumption rate by the cells and consequently preventing maximal expression of the periplasmic nitrate reductase during the first days of the growth period.  相似文献   

2.
Plasmid-mediated virulence genes in non-typhoid Salmonella serovars   总被引:6,自引:0,他引:6  
Abstract Among aerobic prokaryotes, many different terminal oxidase complexes have been described. Sequence comparison has revealed that the aa 3-type cytochrome c oxidase and the bo 3-type quinol oxidase are variations on the same theme: the heme-copper oxidase. A third member of this family has recently been recognized: the cbb 3-type cytochrome c oxidase. Here we give an overview, and report that nitric oxide (NO) reductase, a bc -type cytochrome involved in denitrification, shares important features with these terminal oxidases as well. Tentative structural, functional and evolutionary implications are discussed.  相似文献   

3.
Bradyrhizobium japonicum utilizes cytochrome cbb 3 oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c 550, the electron donor to the Cu-containing nitrite reductase, reduces cbb 3 expression. In order to establish the role of c 550 in electron transport to the cbb 3 oxidase, in this work, we have analyzed cbb 3 expression and activity in the cycA mutant grown under microaerobic or denitrifying conditions. Under denitrifying conditions, mutation of cycA had a negative effect on cytochrome c oxidase activity, heme c (FixP and FixO) and heme b cytochromes as well as expression of a fixP '–' lacZ fusion. Similarly, cbb 3 oxidase was expressed very weakly in a napC mutant lacking the c -type cytochrome, which transfers electrons to the NapAB structural subunit of the periplasmic nitrate reductase. These results suggest that a change in the electron flow through the denitrification pathway may affect the cellular redox state, leading to alterations in cbb 3 expression. In fact, levels of fixP '–' lacZ expression were largely dependent on the oxidized or reduced nature of the carbon source in the medium. Maximal expression observed in cells grown under denitrifying conditions with an oxidized carbon source required the regulatory protein RegR.  相似文献   

4.
Abstract Cytochrome components which participate in the oxidation of nitrite in Nitrobacter winogradskyi have been highly purified and their properties studied in detail. Cytochrome a 1 c 1 is an iron-sulphur molybdoenzyme which has haems a and c and acts as a nitrite-cytochrome c oxidoreductase. Cytochrome c -550 is homologous to eukaryotic cytochrome c and acts as the electron mediator between cytochrome a 1 c 1 and aa 3-type cytochrome c oxidase. The oxidase is composed of two kinds of subunits, has two molecules of haem a and two atoms of copper in the molecule, and oxidizes actively eukaryotic ferrocytochrome c as well as its own ferrocytochrome c -550. Further, a flavoenzyme has been obtained which has transhydrogenase activity and catalyses reduction of NADP+ with benzylviologen radical. This enzyme may be responsible for production of NADPH in N. winogradskyi . The electron transfer against redox potential from NO2 to cythochrome c could be pushed through prompt removal by cytochrome aa 3 of H+ formed by the dehydrogenation of NO2+ H2O. As cytochrome c in anaerobically kept cell-free extracts is rapidly reduced on addition of NO2, a membrane potential does not seem necessary for the reduction of cytochrome c by cytochrome a 1 c 1 with NO2 in vivo.  相似文献   

5.
Abstract Gas chromatographic analyses revealed that rates of release of nitrous oxide from nitrite or nitric oxide in extracts of the c , d 1 cytochrome nitrite reductase-producing denitrifiers, Paracoccus denitrificans and Pseudomonas perfectomarina , were unaffected by preincubation with the metal chelator, diethyldithiocarbamate (DDC). In contrast, preincubation with DDC completely inhibited generation of nitrous oxide from nitrite in extracts of copper protein nitrite reductase-producing denitrifiers, " Achromobacter cycloclastes " and Rhodopseudomonas sphaeroides forma species denitrificans . Pre-exposure to DDC lessened but did not completely inhibit nitric oxide reduction in extracts of the copper protein nitrite reductase-producing denitrifiers. Proton consumption values resulting from pulsing with nitrite were similarly completely inhibited by preincubation with DDC of extracts of the two copper protein-producing denitrifiers. Uptake values related to pulsing with nitric oxide were also lessened but not completely inhibited by prior exposure to DDC. As anticipated, proton consumption was not affected by preincubation with DDC in extracts of P. denitrificans pulsed with nitrite or nitric oxide. Differential sensitivity of copper protein nitrite reductase activity to DDC could provide the simple assay method needed for determination of the distribution of two types of nitrite reductase producers among populations of denitrifiers in nature.  相似文献   

6.
Abstract Chlorate-resistant mutants were generated by random insertion of the transposon Tn5 into genomic DNA of Pseudomonas stutzeri ZoBell strain and selected for loss of nitrate respiration (Nar phenotype). The mutants were differentiated by restriction-fragment analysis, by assaying for nitrate assimilation and for molybdenum co-factor activity, and by the amount of respiratory nitrate reductase. Two mutants, lacking both nitrate respiration and nitrate assimilation, over-produced an inactive nitrate reductase but synthesized in the presence of nitrate only a reduced amount of respiratory nitrite reductase (cytochrome cd 1). Expression of cytochrome cd 1 in these mutants was specifically induced by nitrate, suggesting a sensor system for this substrate.  相似文献   

7.
8.
Cloning and sequencing of the Paracoccus denitrificans ccmG gene indicates that it codes for a periplasmic protein–disulphide oxidoreductase; the presence of the sequence Cys-Pro-Pro-Cys at the CcmG active site suggests that it may act in vivo to reduce disulphide bonds rather than to form them. A CcmG–PhoA fusion confirmed the periplasmic location. Disruption of the ccmG gene resulted in not only the expected phenotype of pleiotropic deficiency in c -type cytochromes, but also loss of spectroscopically detectable cytochrome aa 3, cytochrome c oxidase and ascorbate/TMPD oxidase activities; there was also an enhanced sensitivity to growth inhibition by some component of rich media and by oxidized thiol compounds. Dithiothreitol promoted the growth of the ccmG mutant on rich media and substantially restored spectroscopically detectable cytochrome aa 3 and cytochrome c oxidase activity, although it did not restore c -type cytochrome biogenesis. Assembly of the disulphide-bridged proteins methanol dehydrogenase and Escherichia coli alkaline phosphatase was unaffected in the ccmG mutant. It is proposed that P. denitrificans CcmG acts in vivo to reduce protein–disulphide bonds in certain protein substrates including c -type cytochrome polypeptides and/or polypeptides involved in c -type cytochrome biogenesis.  相似文献   

9.
10.
Abstract Membranes of the extremely thermoacidophilic archaeon Desulfurolobus ambivalens grown under aerobic conditions contain a quinol oxidase of the cytochrome aa 3-type as the most prominent hemoprotein. The partially purified enzyme consists of three polypeptide subunits with apparent molecular masses of 40, 27 and 20 kDa and contains two heme A molecules and one copper atom. CO difference spectra suggest one heme to be a heme a 3-centre. The EPR spectra indicate the presence of a low-spin and a high-spin heme species. Redox titrations of the solubilized enzyme show the presence of two reduction processes, with apparent potentials of + 235 and + 330 mV. The enzyme cannot oxidize reduced cytochrome c , but rather serves as an oxidase of caldariella quinone. Due to their very simple composition, D . ambivalens cell appear as a promising candidate to study Structure-function relationships of cytochrome aa 3 in the integral membrane state.  相似文献   

11.
12.
13.
Abstract Thioredoxin is a small ( M r 12,000) ubiquitous redox protein with the conserved active site structure: -Trp-Cys-Gly-Pro-Cys-. The oxidized form (Trx-S2) contains a disulfide bridge which is reduced by NADPH and thioredoxin reductase; the reduced form [Trx(SH)2] is a powerful protein disulfide oxidoreductase. Thioredoxins have been characterized in a wide variety of prokaryotic cells, and generally show about 50% amino acid homology to Escherichia coli thioredoxin with a known three-dimensional structure. In vitro Trx-(SH)2 serves as a hydrogen donor for ribonucleotide reductase, an essential enzyme in DNA synthesis, and for enzymes reducing sulfate or methionine sulfoxide. E. coli Trx-(SH)2 is essential for phage T7 DNA replication as a subunit of T7 DNA polymerase and also for assembly of the filamentous phages f1 and M13 perhaps through its localization at the cellular plasma membrane. Some photosynthetic organisms reduce Trx-S2 by light and ferrodoxin; Trx-(SH)2 is used as a disulfide reductase to regulate the activity of enzymes by thiol redox control.
Thioredoxin-negative mutants ( trxA ) of E. coli are viable making the precise cellular physiological functions of thioredoxin unknown. Another small E. coli protein, glutaredoxin, enables GSH to be hydrogen donor for ribonucleotide reductase or PAPS reductase. Further experiments with molecular genetic techniques are required to define the relative roles of the thioredoxin and glutaredoxin systems in intracellular redox reactions.  相似文献   

14.
Haemoglobin, methaemoglobin, blood nitrite concentration and acid-base balance were measured in European eel Anguilla anguilla following exposure to 0 (control), 0·142, 0·356, 0·751 and l·549 mM nitrite in fresh water for 24 h. Blood GOT (glutamate oxaloacetate transaminase) and GPT (glutamate pyruvate transaminase) activities and whole animal ammonia-N and urea-N excretions were also measured. Blood nitrite, methaemoglobin, PO 2 (oxygen partial pressure), GOT, and whole animal ammonia-N excretion and urea-N excretion increased directly with increasing ambient nitrite concentrations, whereas blood pH, PCO 2, and HCO3 were inversely related to ambient nitrite concentration. An accumulation of nitrite in the blood of A. anguilla following 24 h exposure to elevated ambient nitrite as low as 0·751 mM increased its blood methaemoglobin, PO 2, GOT and nitrogen excretion, but decreased its PCO 2 (carbon dioxide partial pressure), HCO3 and functional haemoglobin.  相似文献   

15.
Enzyme activities involved in nitrate assimilation were analyzed from crude leaf extracts of wild-type (cv. Williams) and mutant ( nr1 ) soybean [ Glycine max (L.) Merr.] plants lacking constitutive nitrate reductase (NR) activity. The nr1 soybean mutant (formerly LNR-2), had decreased NADH-NR, FMNH2-NR and cytochrome c reductase activities, all of which were associated with the loss of constitutive NR activity. Measurement of FMNH2-NR activity, by nitrite determination, was accurate since nitrite reductase could not use FMNH2 as a reductant source. Nitrite reductase activity was normal in the nr1 plant type in the presence of reduced methyl viologen. Assuming that constitutive NR is similar in structure to nitrate reductases from other plants, presence of xanthine dehydrogenase activity and loss of cytochrome c reductase activity indicated that the apoprotein and not the molybdenum cofactor had been affected in the constitutive enzyme of the mutant. Constitutive NR from urea-grown wild-type plants had 1) greater ability to use FMNH2 as an electron donor, 2) a lower pH optimum, and 3) decreased ability to distinguish between NO3 and HCO3, compared with inducible NR from NO3-grown nr1 plants. The presence in soybean leaves of a nitrate reductase with a pH optimum of 7.5 is contrary to previous reports and indicates that soybean is not an exception among higher plants for this activity.  相似文献   

16.
Abstract The role of cytochrome b 562, a fragile constituent of the respiratory terminal oxidase supercomplex of the thermoacidophilic archaeon, Sulfolobus sp. strain 7, was investigated spectroscopically in the membrane-bound state. Cytochrome b 562 did not react with CO or cyanide in the membrane-bound state, while it was irreversibly modified to a CO-reactive form ( b 562) upon solubilization in the presence of cholate and LiCl. Cyanide titration analyses with the succinate-reduced membrane suggested that cytochrome b 562 was upstream of both the ' g y= 1.89' Rieske FeS cluster and the a -type cytochromes. These results show that the b -type cytochrome functions as an intermediate electron transmitter in the terminal oxidase supercomplex.  相似文献   

17.
The taxonomy of Paracoccus denitrificans and related bacteria is discussed. Evidence is given which shows that the physiological differences between P. denitrificans and Thiosphaera pantotropha are less fundamental than previously thought. A proposal to consider a species P. pantotropha is mentioned. The properties of the denitrifying enzymes and the genes involved in their formation in P. denitrificans is discussed. The synthesis of the membrane-bound nitrate reductase is regulated by FNR, that of the nitrite- and nitric oxide reductase by NNR. Evidence is given that FNR acts as a redox sensor rather than an oxygen sensor. The occurrence of aerobic denitrification and coupled heterotrophic nitrification-denitrification in the original strain of Thiosphaera pantotropha are explained by a limiting respiratory activity which activates FNR. Aerobic denitrification leads to a lower growth yield and an increase in µmax in batch culture when a limiting respiratory activity is assume d and when excess substrate is present. Coupled heterotrophic nitrification-denitrification gives a smaller increase in µmax and a more drastic reduction in yield. Both processes are thus advantageous to the organism. In a chemostat with limiting substrate these processes are disadvantageous. T. pantotropha has lost the ability for aerobic denitrification during extended cultivation. Possibly the substrate concentration was limiting during extended cultivation giving a selective advantage to variants which have lost these properties. The calculations predict that P. denitrificans should be able to grow chemolithotrophically with hydroxylamine.  相似文献   

18.
19.
The visual pigments in the retinal rods of elvers ( Anguilla anguilla L.) were examined by microspectrophotometry and high performance liquid chromatography. The glass elver stage had a mixture of rhodopsin P5011 and porphyropsin P5232 with the former predominating (P5011:P5232= c. 60:40). More mature pigmented elvers had a predominance of the porphyropsin P5232 (P5011:P5232= c. 10:90). The shift between the proportions of each pigment was monitored over a 7-month period and was shown to occur in individual retinal rods. This shift is a reverse of the pigment shift that occurs in adult eels during their downstream migration.  相似文献   

20.
Abstract Evidence is presented to show that the thiosulphate-oxidising multi-enzyme system from Thiobacillus versutus has a periplasmic location, and that the oxygen-binding site of the cytochrome oxidase ( aa 3) is on the inner surface of the membrane. A scheme for the mechanism of generation of a proton motive force during electron flow from thiosulphate to oxygen via cytochrome c and aa 3 is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号