首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two kinds of α-galactosidase-producing microorganisms, strain No. 31–2 and strain No. 7–5, have been isolated from soil and subjected to a determinative study. On the basis of the morphological and physiological characters, the strain No. 31–2 was identified to be belonged to genus Micrococcus and the strain No. 7–5 to genus Bacillus. The former strain, Micrococcus sp. No. 31–2, produced exclusively an intracellular α-galactosidase, and the latter one, Bacillus sp. No. 7–5, secreted the enzyme into culture medium. The cell growth and enzyme production of both strains were observed to reach the maximum under an alkaline culture condition. The intracellular α-galactosidase of Micrococcus sp. No. 31–2 was inducible by galactose, melibiose, and raffinose, while the α-galactosidase of Bacillus sp. No. 7–5 was produced constitutively.  相似文献   

2.
An attempt was made to clarify how Pellicularia filamentosa f. sp. microsclerotia IFO 6298 capable of hydroxylating C21-steroids at the C-19 position converts C19-steroids, especially monohydroxyderivatives of androst-4-ene-3, 17-dione. Such substrates as 11β-hydroxyandrost-4-ene-3,17-dione (I), androst-4-ene-3, 11, 17-trione (II), androsta-1,4-diene-3, 17-dione (III), 11β-hydroxyandrosta-1,4-diene-3,17-dione (IV), 14α-hydroxyandrost-4-ene-3, 17-dione (V), 15α-hydroxyandrost-4-ene-3, 17-dione (VI) and 9α-hydroxyandrost-4-ene-3, 17-dione (VII) were converted by the organism. All the main and several minor products were then isolated and identified. As a result it is concluded that this organism converts I and II into 14α-hydroxyandrost-4-ene-3,11,17-trione, III and IV into 14α-hydroxyandrosta-1,4-diene-3,1l,17-trione, V into 11α 14α dihydroxyandrost-4-ene-3, 17-dione (main) and 11β, 14α-dihydroxyandrost-4-ene-3, 17-dione (minor, a tentative structure), VI into 11β, 15α-dihydroxyandrost-4-ene-3,17-dione (main) and 15α-hydroxyandrost-4-ene-3,11,17-trione (minor, a tentative structure) and VII into 9α, 14α-dihydroxyandrost-4-ene-3, 17-dione (main) and 6β, 9α-dihydroxyandrost-4-ene-3,17-dione (minor).

In addition, the structural requirement of substrate for the 19-hydroxylation catalyzed by the organism and the influence of a hydroxyl group on steroid nucleus upon the 11β- and 14α-hydroxylations and the 11β-OH-dehydrogenation was discussed.  相似文献   

3.
A bacterial consortium capable of degrading nitroaromatic compounds was isolated from pesticide-contaminated soil samples by selective enrichment on 2-nitrotoluene as a sole source of carbon and energy. The three different bacterial isolates obtained from bacterial consortium were identified as Bacillus sp. (A and C), Bacillus flexus (B) and Micrococcus sp. (D) on the basis of their morphological and biochemical characteristics and by phylogenetic analysis based on 16S rRNA gene sequences. The pathway for the degradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1 was elucidated by the isolation and identification of metabolites, growth and enzymatic studies. The organism degraded 2-nitrotoluene through 3-methylcatechol by a meta-cleavage pathway, with release of nitrite.  相似文献   

4.
The enzyme activity to synthesize pyridoxine glucoside was demonstrated in intact cells and cell extracts of genera, Sarcina and Micrococcus. The isolated and identified strain, Micrococcus sp. No. 431 was found to have high activity of this enzyme in its cell extract.

The enzyme activity reached to a maximum after 20 hr of cultivation.

The enzyme which synthesized pyridoxine glucoside via transglucosidation from sucrose to pyridoxine was purified from Micrococcus sp. No. 431 by means of ammonium sulfate fractionation, DEAE-Sephadex, hydroxylapatite and Sephadex G–100 column chromatographies. The enzyme was purified about 354–fold and confirmed to be homogenous in polyacrylamide-gel electrophoresis and ultracentrifugation.  相似文献   

5.
Among marine bacteria isolated from the cytotoxic sponge Hymeniacidon perleve, one strain NJ6-3-1 classified as Pseudomonas sp. showed both cytotoxic and antimicrobial activities. Fatty acid analysis indicated that the bacterial strain consists mainly of C16:1, C16:0, C18:1, C18:0, C15:0, C14:0. One unusual 9,10-cyclopropane-C17:0 fatty acid and C26:0 also constitute major components, as well as the existence of squalene, the precursor of triterpenoids. The major metabolites in the culture broth were identified as alkaloids, including diketopiperazines and indole compounds, namely 3,6-diisopropylpiperazine-2,5-dione, 3-benzyl-3-isopropylpiperazine-2,5-dione, 3,6-bis-(2-methylpropyl)-piperazine-2,5-dione, indole-3-carboxaldehyde, indole-3-carboxylic acid methyl ester, indole-3-ethanol, and quinazoline-2,4-dione.From Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 1, 2005, pp. 35–39.Original English Text Copyright © 2005 by Li Zheng, Xiaojun Yan, Jilin Xu, Haimin Chen, Wei Lin.This article was submitted by the authors in English.  相似文献   

6.
A microorganism capable of degrading diethylphthalate as a sole carbon source was isolated from garden soil and tentatively identified asMicrococcus sp. Monoethylphthalate and phthalic acid were shown to be the intermediates by thin-layer chromatography and spectrophotometric and mass spectral analysis. The strain degraded diethylphthalate mainly through monoethylphthalate and phthalic acid as was evidenced by oxygen uptake and enzymatic studies. Ethanol also supported the growth of this organism. It appeared that the entire molecule was metabolized byMicrococcus sp.  相似文献   

7.
Microbial 16β-hydroxylation of some steroids with Wojnowicia graminis, Corticium centrifugum and Bacillus megaterium has been reported, but not 16β-hydroxylation of normal 17-oxo steroids with Aspergillus niger. This time, we tried microbial transformation of dehydroepiandrosterone with this fungus, and obtained 4-androstene-3,17-dione, 17β-hydroxy-4-androstene-3,16-dione, 16β,17β-dihydroxy-4-androsten-3-one and a new compound, 16β-hydroxy-4-androstene-3,17-dione. This new compound was also obtained by the fermentation of 4-androstene-3,17-dione and testosterone.  相似文献   

8.
In a comparative study 351 strains of Micrococcus subgroups 1–3 (Baird-Parker, 1963, 1965, 1974) were classified according to the Kloos and Schleifer scheme (1975b). The results showed that Micrococcus subgroups 1, 2 and 3 are heterogeneous groups in the Kloos and Schleifer scheme. Strains belonging to Micrococcus subgroups 1 and 2 were mostly classified by the Kloos and Schleifer criteria as Staphylococcus hominis, Micrococcus subgroup 3 strains from the skin as S. cohnii, while Micrococcus subgroup 3 strains from urinary infections were classified mainly as S. saprophyticus. The correlation of novobiocin resistant S. saprophyticus biotype III (Baird-Parker, 1974) with S. saprophyticus (Kloos and Schleifer, 1975a, 1975b) when isolated from urine, was 80%. Although the Kloos and Schleifer scheme provides more information about biochemical characters, doubts are expressed about the validity of some of the species so delineated.  相似文献   

9.
Nine hydroxy-derived androstadiene compounds were isolated from the fermentation broth of Neurospora crassa when incubated in the presence of androst-1,4-dien-3,17-dione (ADD; I) for 7 days. Hydroxylations at 6β, 7β, 11α, 14α- positions and 17-carbonyl reduction of the substrate were the characteristics observed in this biotransformation. Their structures were determined by spectroscopic methods as 17β-hydroxyandrost-1,4-dien-3-one (II), 14α-hydroxyandrost-1,4-dien-3,17-dione (III), 6β-hydroxyandrost-1,4-dien-3,17-dione (IV), 11α-hydroxyandrost-1,4-dien-3,17-dione (V), 6β,17β-dihydroxyandrost-1,4-dien-3-one (VI), 7β-hydroxyandrost-1,4-dien-3,17-dione (VII), 14α,17β-dihydroxyandrost-1,4-dien-3-one (VIII), 6β,14α-dihydroxyandrost-1,4-dien-3,17-dione (IX), and 11α,17β-dihydroxyandrost-1,4-dien-3-one (X). A new steroid substance, 6β,14α-dihydroxyandrost-1,4-dien-3,17-dione (IX), was also characterized during this study. The best fermentation condition was found to be 7-day incubation at 25°C and pH values of 5.0–6.0 in the presence of 0.05 g 100 mL?1 of the substrate. At a concentration above 0.075 g 100 mL?1, the biotransformation was completely inhibited.  相似文献   

10.
Summary The bioconversion of hydrocortisone by a locally isolated strain of cyanobacterium Fischerella ambigua PTCC 1635 was investigated. Fischerella ambigua had not been previously examined for this potential. The fermentation led to production of 11β,17α, 20β, 21-tetrahydroxypregn-4-en-3-one and 11β-hydroxyandrost-4-en-3,17-dione. The metabolites were isolated and purified by chromatographic methods and identified using instrumental analyses.  相似文献   

11.
The strain of Acremonium strictum PTCC 5282 was applied to investigate the biotransformation of androst-1,4-dien-3,17-dione (I; ADD). Microbial products obtained were purified by preparative TLC and the pure metabolites were characterized on the basis of their spectroscopic features (13C NMR, 1H NMR, FTIR, MS) and physical constants (melting points and optical rotations). The 15α-Hydroxyandrost-1,4-dien-3,17-dione (II), 17β-hydroxyandrost-1,4-dien-3-one (III), androst-4-en-3,17-dione (IV; AD), 15α-hydroxyandrost-4-en-3,17-dione (V), 15α,17β-dihydroxyandrost-1,4-dien-3-one (VI) and testosterone (VII) were produced during this fermentation. Formation of the 15α,17β-dihydroxy derivative of ADD is reported for the first time during steroid biotransformation. The bioconversion reactions observed were 1,2-hydrogenation, 15α-hydroxylation and 17-ketone reduction. From the time course profile of this biotransformation, ketone reduction and 1,2-hydrogenation were observed from the first day of fermentation while 15α-hydroxylation occurred from the third day. Optimum concentration of the substrate, which gave the maximum bioconversion efficiency, was 0.5 mg ml−1 in one batch. The highest yield of the microbial products recorded in this work was achieved within the pH range 6.5–7.3 and at the temperature of 27 °C.  相似文献   

12.
 Enrichment containing large numbers of slow-growing bacteria was developed by repeated batch culture under high biomass concentrations (more than 10 000 mg biomass/l). The characteristics of slow-growing bacterial populations were elucidated by application of colony-forming-curve (CFC) analysis. The CFC were obtained by counting the number of visible colonies on agar plates at successive intervals. The enrichment consisted of several groups with different colony-forming rates and the slow-growing bacteria appeared on cell extract/agar plates after 7 days of incubation. It was found that large numbers of slow-growing bacteria survived under starvation conditions. One of the slow colony-forming bacteria, strain TI-X7, was tentatively identified as being of the genus Micrococcus. The enrichment contained a large amount of Micrococcus-like tetrad cells. The dialysate fractions in excess cell extract, permeable through dialysis tubing, were extremely effective for growth of strain TI-X7. Received: 15 December 1995/Accepted: 20 February 1996  相似文献   

13.
The biotransformation of dehydroepiandrosterone (1) with Macrophomina phaseolina was investigated. A total of eight metabolites were obtained which were characterized as androstane-3,17-dione (2), androst-4-ene-3,17-dione (3), androst-4-ene-17β-ol-3-one (4), androst-4,6-diene-17β-ol-3-one (5), androst-5-ene-3β,17β-diol (6), androst-4-ene-3β-ol-6,17-dione (7), androst-4-ene-3β,7β,17β?triol (8), and androst-5-ene-3β,7α,17β-triol (9). All the transformed products were screened for enzyme inhibition, among which four were found to inhibit the β-glucuronidase enzyme, while none inhibited the α-chymotrypsin enzyme.  相似文献   

14.
A Micrococcus strain occurring frequently and isolated multiple times from stones was studied for its ability to adhere to substrates and to produce exopolysaccharides or extracellular polymeric substances, one of the essential prerequisites for biofilm formation. Measurements of the biodeterioration activity of this strain in terms of (i) pH drop, (ii) organic acid production, and (iii) weight loss of marble slabs demonstrated the highly aggressive biodeteriorating potential of the strain in question.  相似文献   

15.
None of the fourteen thermophilic moulds was able to break down the aliphatic side chain of sterols,viz. cholesterol, lanosterol, sitosterol, and stigmasterol so as to yield 4-androstene-3, 17-dione, 1,4-androstadiene-3, 17-dione and progesterone. InAcremonium alabamensis and.Talaromyces emersonii, cholestenone was detected as a product of fermentation of cholesterol whereas the former yielded stigmastadienone from stigmasterol and sitosterol. Lanosterol appeared to be resistant to fungal bioconversion. All the thermophilic moulds exhibited avidity for binding sterols to the mycelium, but the ability to bind sterol seemed to depend upon the nature of the organism and the sterol.  相似文献   

16.
A slime-producing isolate of Staphylococcus epidermidis attached to FDA Group II hydrogel contact lenses persisted on rabbit eyes for up to 14 days, but except for minor redness of the eye no other effect was observed. Eye flora of eight representative New Zealand White rabbits included four different species of Staphylococcus including S. epidermidis and one species of Micrococcus, none of which produced overtly obvious biofilms. The slime-producing strain of S. epidermidis adhered more effectively to lenses than a non-slime-producing strain, and lenses challenged with the slime-producing strain remained on the rabbit eye for longer time periods than those with a non-slime-producing strain. Bacteria associated with the contact lens may affect the retention of the lens on the rabbit cornea during experimental studies.  相似文献   

17.
Soil and sediment samples obtained from Orange MR dye contaminated habitat were screened for heterotrophic bacterial population. The heterotrophic bacterial density of dye-contaminated soil was 2.14 × 106 CFU/g. The generic composition of heterotrophic bacterial population was primarily composed of 10% of Proteus sp., 15% Aeromonas sp., 20% Bacillus sp., 25% Pseudomonas sp. and 30% Micrococcus sp. The bacterial strain that decolorized the azo dye Orange MR up to 900 ppm was identified as Micrococcus sp. The optimum inoculum load, pH and temperature were found to be 5%, 6 and 35°C, respectively. The rate of decolorization was assessed using spectrophotometer at 530 nm and the percentage of decolorization was ascertained. The autochthonous bacterial isolate was able to utilize the dye as both nitrogen and carbon source.  相似文献   

18.
A bacterium, strain 22Lin, was isolated on cyclohexane-1,2-diol as sole electron donor and carbon source and nitrate as electron acceptor. Cells are motile rods and are facultatively anaerobic. A phylogenetic comparison based on the total 16S rRNA gene sequence allowed the assignment of the isolate to the genus Azoarcus. Cyclohexanol, cyclohexanone, cyclohexane-1,3-diol, and cyclohexane-1,3-dione, which are oxidized by a different denitrifying strain, did not support denitrifying growth of isolate 22Lin. On the contrary, cyclohexanol (I50 = 37 μM) and cyclohexanone (I50 = 28 μM) inhibited growth on cyclohexane-1,2-diol, but not on acetate. NAD was reduced by crude extracts of strain 22Lin in the presence of cyclohexane-1,2-dione, but not in the presence of cyclohexanone or cyclohexane-1,3-dione. The formation of 6-oxohexanoate from cyclohexane-1,2-dione and of adipate during NAD reduction suggests that strain 22Lin possesses a carbon–carbon hydrolase that transforms cyclohexane-1,2-dione into 6-oxohexanoate. This pathway was once observed in an aerobic pseudomonad that was lost and could not be reisolated. Here, the application of strictly anoxic enrichment conditions enabled the reisolation of another strain (22Lin) that uses this pathway. Received: 3 February 1997 / Accepted: 12 May 1997  相似文献   

19.
A hybrid cell line, 3G6, producing monoclonal antibody (mAb) against the polyglycerophosphate (PGP) backbone of lipoteichoic acids has been derived by the polyethylene glycol-induced fusion of mouse myeloma cells and spleen cells from mice immunized with partially purified glucosyltransferase from culture supernatant of Streptococcus mutans strain 6715. Immunodiffusion tests and ELISA revealed that the antibody reacted with purified PGP from group A Streptococcus pyogenes strain Sv as well as crude phenol-water and saline extracts of various gram-positive bacteria except for a few species such as biotype B S. sanguis, Micrococcus sp., and Actinomyces viscosus. Whole cells of serotype b S. mutans and Staphylococcus epidermidis were agglutinated upon addition of 3G6 mAb, while those of most other species were not significantly affected by this procedure. A hapten inhibition study showed that glycerophosphate was only a potent inhibitor of passive hemagglutination reactions between LTA coated sheep erythrocytes and 3G6 mAb.  相似文献   

20.
Thermoacidophilic and halotolerant microorganisms from the Antarctic continent were studied for their lipid modulation under stress growth conditions. Temperature-induced changes in complex lipids and fatty acids of four strains belonging to the genus Alicyclobacillus involved the relative proportions of different polar lipids and the synthesis of ω-cyclohexyl-acyl chains, which were favoured by high temperatures. Studies were carried out on the lipid composition of four strains of extremely halotolerant bacteria belonging to the genus Micrococcus grown at different salt concentrations from 0 up to 4.5 M NaCl. The main lipids found were two unidentified glycolipids and two phospholipids: 1,2 diacylglycero-3-phosphoryl-glycerol (PG) and cardiolipin (DPG). Among the strains analysed, the lipids of the Micrococcus strain Erebus were shown to be strongly influenced by salt concentrations, in that DPG and one glycolipid were absent at a low salt molarity while, under these conditions, PG was the main lipid found. The predominant fatty acids in all halotolerant strains were of the anteiso type; growth under increasing salinity gave rise to an increase in long chain fatty acids and of straight chain fatty acids, while a decrease in iso fatty acids occurred. Accepted: 20 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号