首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies have been prepared against purified preparations of the heart and kidney nucleotide translocator in the 'c'-conformation. The results show organ-specific antigenic determinants on the translocator proteins isolated from heart, kidney and liver although a partial cross-reactivity between these three proteins was demonstrable. The organ specificity was observed both with the solubilized and with the membrane-bound translocator protein indicating organ-specific determinants on exposed regions of the carrier. An organ-specific inhibition of the nucleotide transport in heart mitochondria by the heart carboxyatractylate-protein antiserum leads to the conclusion that the organ specificity is at least partially conditioned by the binding site for the substrate and/or the closely linked gate of the carrier protein. Apart from the organ specificity the results also demonstrate a specificity of the antibodies for the translocational conformations of the carrier: the 'c'-conformation stabilized in the carboxyatractylate-protein complex and the 'm'-conformation present in the bongkrekate-protein complex. However, after denaturation of the carboxytraktylate-protein and bongkrekate-protein complexes the binding of the anti-(carboxyatractylate-protein) antiserum to both inhibitor-protein complexes was nearly identical. The conformation specificity was also expressed by the inhibition of the conformation transition from the 'c'- to the 'm'- state. This side-specific inhibition of the nucleotide transport and the identical binding activity of the carboxyatractylate-protein antiserum against the denatured carboxyatractylate-protein and bongkrekate-protein complexes suggested that the conformation-specific antigenic determinants are topographic surface regions which are determined by the chain folding.  相似文献   

2.
3.
The ADP/ATP translocator was selectively labeled with the triplet probe eosin-5-maleimide (EMA) after pretreatment with N-ethylmaleimide in beef heart mitochondria, as reported previously for submitochondrial particles (Müller, M., Krebs, J. J. R., Cherry, R. J., and Kawato, S. (1982) J. Biol. Chem. 257, 1117-1120). The EMA binding was completely inhibited by carboxyatractylate. 0.7-1.1 molecules of EMA conjugated with 1 molecule of the dimeric translocator with Mr approximately 65,000. The EMA binding decreased [14C]ADP uptake by about approximately 25%. The EMA-labeled translocator bongkrekate complex was purified and reconstituted in liposomes by removing Triton X-100 with Amberlite XAD-2. The liposomes were composed of phosphatidylcholine/phosphatidylethanolamine/cardiolipin and the lipid to protein ratio by weight was (L/P) = 60. Rotational diffusion of the ADP/ATP translocator around the membrane normal was measured in reconstituted proteoliposomes and in the mitochondrial inner membranes by observing the flash-induced absorption anisotropy, r(t), of EMA. In proteoliposomes with L/P = 60, the translocator was rotating with an approximate average rotational relaxation time of phi congruent to 246 microseconds and a normalized time-independent anisotrophy [r3/rr(0)]min congruent to 0.55. In intact mitochondria, values of phi congruent to 405 microseconds and r3/rr(0) congruent to 0.79 were obtained. The higher value of r3/rr(0) in mitochondria compared with proteoliposomes indicates the co-existence of rotating and immobile translocator (phi greater than 20 ms) in the inner mitochondrial membrane. Based on the assumption that all the translocator is rotating in the lipid-rich proteoliposomes, the population of the mobile translocator at 20 degrees C was calculated to be approximately 47%. By removing the outer membrane, the mobile population was increased to approximately 70% in mitoplasts, while approximately 53% of the translocator was rotating in submitochondrial particles. The above results indicate a significant difference in protein-protein interactions of the ADP/ATP translocator in the different types of inner membranes of mitochondria. The immobile population of the translocator could be due to nonspecific protein aggregates caused by the very high concentration of proteins in the inner membrane of mitochondria (L/P approximately 0.4).  相似文献   

4.
The emergence of the reactivity of -SH groups associated with conformation changes has been studied on the ADP/ATP carrier, is isolated in three different inhibitor-protein complexes. 1. The bongkrekate-protein complex incorporates approximately one molecular more of N-ethylmaleimide than the carboxyatractylate-protein complex. After extensive denaturation by dodecylsulfate in urea, both inhibitor complexes exhibit four reactive -SH groups per subunit. Thus one of four -SH groups per subunit has been unmasked in the bongkrekate-protein complex. 2. The interconversion from the bongkrekate-protein complex to the carboxyatractylate-protein complex is inhibited after the -SH groups have been blocked. 3. The protein complex isolated with the more easily dissociable atractylate, is used to demonstrate, by the emergence of the -SH groups, the transition into the m-state. This transition is specifically catalyzed by ADP and ATP. 4. Using 2,2'-dinitro-5,5'-dithiodibenzoate, the appearance of the -SH groups on transition from the c-state to the m-state can be followed spectrophotometrically. The specificity for the catalyzing nucleotides is identical with that for the transport. The Km for ADP and ATP is in the range of 1 microM. In conclusion, the thiol groups of the isolated ADP/ATP carrier behave as in the mitochondrial membrane. The unmasking of -SH groups is in full accordance with the concept of two conformational states (c and m).  相似文献   

5.
The adenine nucleotide carrier from maize (Zea mays L. cv B 73) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. Sodium dodecyl sulfate-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 32 kD. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5'-phosphate-sensitive ATP/ATP exchange. It was purified 168-fold with a recovery of 60% and a protein yield of 0.25% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ADP, ATP, GDP, and GTP, and was inhibited by atractyloside, bongkrekate, phenylisothiocianate, pyridoxal 5'-phosphate, and mersalyl (but not N-ethylmaleimide). Maximum initial velocity of the reconstituted ATP/ATP exchange was determined to be 2.2 mumol min-1 mg-1 protein at 25 degrees C. The half-saturation constants and the corresponding inhibition constants were 17 microM for ATP, 26 microM for ADP, 59 microM for GTP, and 125 microM for GDP. The activation energy of the ATP/ATP exchange was 48 kilojoule/mol between 0 and 15 degrees C, and 22 kilojoule/mol between 15 and 35 degrees C. Partial amino acid sequences showed that the purified protein was the product of the ANT-G1 gene sequenced previously (B. Bathgate, A. Baker, C.J. Leaver [1989] Eur J Biochem 183: 303-310).  相似文献   

6.
Leak of protons into the mitochondrial matrix during substrate oxidation partially uncouples electron transport from phosphorylation of ADP, but the functions and source of basal and inducible proton leak in vivo remain controversial. In the present study we describe an endogenous activation of proton conductance in mitochondria isolated from rat and mouse skeletal muscle following addition of respiratory substrate. This endogenous activation increased with time, required a high membrane potential and was diminished by high concentrations of serum albumin. Inhibition of this endogenous activation by GDP [classically considered specific for UCPs (uncoupling proteins)], carboxyatractylate and bongkrekate (considered specific for the adenine nucleotide translocase) was examined in skeletal muscle mitochondria from wild-type and Ucp3-knockout mice. Proton conductance through endogenously activated UCP3 was calculated as the difference in leak between mitochondria from wild-type and Ucp3-knockout mice, and was found to be inhibited by carboxyatractylate and bongkrekate, but not GDP. Proton conductance in mitochondria from Ucp3-knockout mice was strongly inhibited by carboxyatractylate, bongkrekate and partially by GDP. We conclude the following: (i) at high protonmotive force, an endogenously generated activator stimulates proton conductance catalysed partly by UCP3 and partly by the adenine nucleotide translocase; (ii) GDP is not a specific inhibitor of UCP3, but also inhibits proton translocation by the adenine nucleotide translocase; and (iii) the inhibition of UCP3 by carboxyatractylate and bongkrekate is likely to be indirect, acting through the adenine nucleotide translocase.  相似文献   

7.
M Klingenberg  I Mayer  M Appel 《Biochemistry》1985,24(14):3650-3659
The binding of the 3'-[1,5-(dimethylamino)naphthoyl] (DAN) derivatives of AMP, ADP, and ATP to the solubilized ADP/ATP carrier is studied, evaluating primarily the fluorescence enhancement and 3H-labeled compound binding. DAN nucleotides also fluoresce when adsorbed to Triton X-100 micelles that are used for solubilization of the carrier. The partition of DAN-AMP between water and Triton X-100 micelles is measured, and it is shown to be shifted toward a higher content in Triton micelles with increasing salt concentration. In order to maintain a low level of fluorescence, the Triton content is decreased. The fraction of DAN nucleotide fluorescence due to carrier binding is determined by the suppression with bongkrekate (BKA). In contrast to the membrane-bound carrier, the solubilized preparation shows an increase of total BKA-sensitive fluorescence by 30-60% upon addition of ATP or ADP. In the solubilized atractylate-protein complex, the ADP-stimulated fluorescence amounts even to 80%. The suppression of fluorescence by BKA is independent of the presence of ADP or ATP, while that by carboxyatractylate (CAT) depends on ADP or ATP. The quantitation with [3H]BKA and [3H]CAT of these ligand interactions with DAN-AMP fluorescence shows that DAN-AMP fluorescence reflects the "m"-state carrier population and its redistribution under the influence of ADP or ATP. Thus, besides the "c"/"m" distribution, the kinetics of the c to m transition in the solubilized carrier also can be determined. The m share is increased to 80% when SO4, Pi, or pyrophosphate is present during solubilization. The rate of the ADP- or ATP-stimulated transition to the m state is markedly dependent on pH and on the presence of various anions, whereas the extent is little varied. The affinity decreases 4-fold going from DAN-AMP to DAN-ADP and to DAN-ATP (KD = 0.9, 1.6, and 3.2 microM). Comparison with physical binding of [3H]DAN nucleotides shows that the fluorescence yield of bound DAN-AMP is about 1.4 times higher than that of bound DAN-ATP. DAN substitution causes more than a 100-fold affinity increase for AMP and a 50-fold increase for ADP or ATP, probably because of interaction of the DAN group with a hydrophobic niche. A less specific, low-affinity displacement of DAN nucleotides by GDP, ADP, GTP and ATP (Ki = 1-2 mM) probably reflects primarily the ionic interactions at the binding center.  相似文献   

8.
Atractyloside is known to bind to the ADP/ATP translocase of the inner mitochondrial membrane, a complex formed by two basic protein subunits of relative molecular mass around 30 000. We found that synaptic vesicles from the electric organ of Torpedo marmorata, which store acetylcholine and ATP, bind atractyloside as well. Similarly to mitochondria, a protein-atractyloside complex could be solubilized from vesicle membranes with Triton X-100. Characterization of the complex by gel filtration, isoelectric focusing and gel electrophoresis revealed that atractyloside was bound to protein V11, earlier described as a major vesicle membrane component with a relative molecular mass around 34 000 and a basic isoelectric point. Since earlier experiments have already shown that uptake of ATP into isolated vesicles in vitro is inhibited by atractyloside, we can conclude now that V11 constitutes the nucleotide carrier of this secretory organelle. The structural and functional relationship of the mitochondrial and vesicular nucleotide translocases suggest a common evolutionary origin.  相似文献   

9.
Membrane-bound proteinase activity was demonstrated by a solid-phase assay system in both beef heart and rat liver mitochondria. The activity was sensitive to SH reagents and assorted proteinase inhibitors. Although stimulated by nonionic detergents, it became labile when solubilized by detergents. The proteinase activity from heart mitochondria copurified with the ADP:ATP translocator protein. Gel electrophoresis of this preparation revealed the translocator polypeptide as well as a number of minor components. In solubilized mitochondria the ADP:ATP translocator polypeptide slowly disappeared upon standing at 0°C as revealed by polyacrylamide gel electrophoresis under denaturing conditions. The loss of this polypeptide was prevented by addition of proteinase inhibitors as well as the translocator affinity ligand, carboxyatractylate. These observations confirm the presence of an integral membrane proteinase in mitochondria and suggest a structural and enzymatic interaction between the proteinase and the ADP:ATP translocator.Abbreviations PMSF phenylmethanesulfonyl fluoride - TPCK l-1-tosylamido-2-phenylethylchloromethyl ketone - TLCK 1-chloro-3-tosylamido-7-amino-l-2-heptanone - NEM N-ethylmaleimide - PCMBS p-chloromercuriphenylsulfonic acid - SDS sodium dodecyl sulfate - MOPS morpholinopropane sulfonate - [I50] concentration of inhibitor required to give 50% inhibition  相似文献   

10.
The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details. 1. In homologous and heterologous translation systems th newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant. 2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120 000 and 500 000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200 000-400 000. 3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20-30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largley resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a preprequisite for translocation into proteinase resistant position. 4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding. These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form as precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein.  相似文献   

11.
ADP greatly enhances the rate of Ca2+ uptake and retention in Ca2+ loaded mitochondria. Atractyloside, a specific inhibitor of the ADP/ATP translocator, completely inhibits the ADP effect, while bongkrekate, another specific inhibitor of the translocator enhances the effect of ADP. These results indicate that locking the ADP/ATP translocator in the M-state is sufficient to produce the ADP effect. Cyclosporin A, a specific inhibitor of the Ca2(+)-induced membrane permeabilization does not substitute for ADP, indicating that ADP directly affect the rate of electrogenic Ca2+ uptake. The effect of the translocator conformation on the rate of electrogenic Ca2+ uptake is independent of the concentration of Pi and is not caused by changes in membrane potential. However, locking the carrier in the M-state appears to increase the negative surface charge on the matrix face of the inner membrane. This may lead to an enhanced rate of Ca2+ dissociation from the electrogenic carrier at the matrix surface. The rate of Na(+)-independent Ca2+ efflux is only slightly inhibited by locking the carrier in the M-state, presumably due to the same mechanism. In the presence of ADP, Pi inhibits the Na(+)-independent efflux. In the presence of physiological concentrations of spermine, Pi and Mg2+, the rate of Ca2+ uptake, Ca2+ retention and Ca2+ set points depend sharply on ADP concentration at the physiological range of ADP. Thus, changes of cytosolic ADP concentration may lead to change in the rate of Ca2+ uptake by mitochondria and thus modulate the excitation-relaxation cycles of cytoplasmic free calcium.  相似文献   

12.
Effects of cold exposure in vivo and treatment with laurate, carboxyatractylate, atractylate, nucleotides, and BSA in vitro on potato tuber mitochondria have been studied. Cold exposure of tubers for 48-96 h resulted in some uncoupling that could be reversed completely by BSA and partially by ADP, ATP, UDP, carboxyatractylate, and atractylate. UDP was less effective than ADP and ATP, and atractylate was less effective than carboxyatractylate. The recoupling effects of nucleotides were absent when the nucleotides were added after carboxyatractylate. GDP, UDP, and CDP did not recouple mitochondria from either the control or the cold-exposed tubers. This indicates that the cold-induced fatty acid-mediated uncoupling in potato tuber mitochondria is partially due to the operation of the ATP/ADP antiporter. As to the plant uncoupling protein, its contribution to the uncoupling in tuber is negligible or, under the conditions used, somehow desensitized to nucleotides.  相似文献   

13.
Two anion-transporting systems, i.e., the dicarboxylate carrier and the 2-oxoglutarate carrier, have been purified from rat liver mitochondria and functionally identified. The dicarboxylate carrier has been isolated in active form by hydroxyapatite chromatography after partial removal of the solubilizing detergent Triton X-114 from the mitochondrial extract. The SDS gel electrophoresis of this preparation consists mainly of one protein band with an apparent Mr of 28,000, identified as the dicarboxylate carrier. Complete purification of the 28 kDa protein in inactive form has been achieved by sequential chromatography on hydroxyapatite and Celite followed by SDS extraction of the retained protein. The 2-oxoglutarate carrier has been purified by hydroxyapatite chromatography after extensive removal of Triton X-114 from the detergent extract. SDS gel electrophoresis of the purified fraction shows a single band with an apparent Mr of 32,500. When reconstituted into liposomes, the functional properties of the two isolated carrier proteins resemble closely those of the dicarboxylate and the 2-oxoglutarate transport systems characterized in mitochondria.  相似文献   

14.
The biosynthesis of the ADP,ATP carrier was studied in mitochondria of Neurospora crassa. The carrier was isolated as the carboxyatractylate-protein complex and characterized in dodecylsulphate/polyacrylamide gel electrophoresis to have a Mr = 33 000. Applying the inhibitors chloramphenicol for the intramitochondrial translation and cycloheximide for extramitochondrial translation, the site of synthesis of this polypeptide was found to be extramitochondrially located.  相似文献   

15.
Effects of cold exposure in vivo and treatment with laurate, carboxyatractylate, atractylate, nucleotides, and BSA in vitro on potato tuber mitochondria have been studied. Cold exposure of tubers for 48-96 h resulted in some uncoupling that could be reversed completely by BSA and partially by ADP, ATP, UDP, carboxyatractylate, and atractylate. UDP was less effective than ADP and ATP, and atractylate was less effective than carboxyatractylate. The recoupling effects of nucleotides were absent when the nucleotides were added after carboxyatractylate. GDP, UDP, and CDP did not recouple mitochondria from either the control or the cold-exposed tubers. This indicates that the cold-induced fatty acid-mediated uncoupling in potato tuber mitochondria is partially due to the operation of the ATP/ADP antiporter. As to the plant uncoupling protein, its contribution to the uncoupling in tuber is negligible or, under the conditions used, somehow desensitized to nucleotides.  相似文献   

16.
The ADP/ATP carrier was studied by a fluorescent substrate, formycin diphosphate which is the only fluorescent ADP analogue to bind. Its low quantum yield, short decay time and spectral overlap with tryptophan has as yet prevented its wider use. By incorporating fluorescent acceptors of formycin diphosphate fluorescence, anthracene-maleimide and vinylanthracene, into the membrane, these difficulties were circumvented. Only bound formycin diphosphate transfers energy to the probes so that the secondary emission of these probes is a measure for membrane-bound formycin diphosphate. The fluorescent transfer is inhibited by ADP, bongkrekate and carboxyatractylate whether added before or after incubation of formycin diphosphate showing that only binding to the adenine nucleotide carrier is measured. It also shows directly that the earlier demonstrated ADP fixation by bongkrekate is indeed a displacement into the matrix. The fluorescence decay time of the bound formycin diphosphate is measured as 1.95 ns compared to 0.95 ns of the free formycin diphosphate, indicating that formycin diphosphate is bound at the carrier in a non-polar environment. The depolarization decay time was found to be larger than 15 ns, indicating that carrier-bound formycin diphosphate is immobile within this time period.  相似文献   

17.
Strong support for the central role of the ADP/ATP carrier (AAC) in the mitochondrial permeability transition (mPT) is provided by the single-channel current measurements in patch-clamp experiments with the isolated reconstituted AAC. In previous work [Brustovetsky, N., and Klingenberg, M. (1996) Biochemistry 35, 8483-8488], this technique was applied to the AAC isolated from bovine heart mitochondria. Here we used recombinant AAC (rAAC) from Neurospora crassa expressed in E. coli, since AAC from mammalian sources cannot be expresssed in E. coli. The rAAC is free from residual mitochondrial components which might associate with the AAC in preparation from bovine heart. Ca(2+)-dependent channels with up to 600 pS are obtained, which are gated at >150 mV. The channel corresponds to a preferential matrix-outside orientation of rAAC in the patch membrane as shown with carboxyatractylate and a polar gating asymmetry. The channel is inhibited by ADP and bongkrekate, not by carboxyatractylate. Cyclophilin, isolated from Neurospora crassa, suppresses the gating, thus increasing conductivity at high positive voltage. Cyclosporin A abolishes the cyclophilin effect. ADP does not eliminate the cyclophilin effect but produces fast large-amplitude flickering of the channel without a stable decrease of the channel conductance. Also the pro-oxidant tert-butyl hydroperoxide reversibly suppresses voltage gating of the channel. The results show that the AAC can be a conducting component of the mPT pore, exhibiting similar characteristics as the mPT pore (response to Ca(2+), BKA, ADP), with a cyclophilin and pro-oxidant-sensitive gating at high voltage.  相似文献   

18.
Submitochondrial particles were labeled with the triplet probe eosin-5-maleimide (EMA) after pretreatment with N-ethylmaleimide. On sodium dodecyl sulfate-polyacrylamide gels, eosin fluorescence occurred in a single band of Mr approximately 30,000. The labeled band was identified as the ADP/ATP translocator, since EMA binding was completely inhibited by carboxyatractylate. Furthermore, the EMA-labeled polypeptide had the same molecular weight as the purified carboxyatractylate-bound translocator and the purified EMA-labeled translocator. Rotational diffusion of the translocator around the membrane normal in submitochondrial particles was measured by observing flash-induced absorption anisotropy of EMA. The translocator rotates with a time constant which varied from approximately 240 microseconds at 5 degrees C to approximately 100 microseconds at 37 degrees C. However, it is likely that only a fraction of the translocator rotates, the remainder being immobile over the measurement time of 500 microseconds. The mobile fraction of the translocator decreased with decrease in temperature. The observed fluorescence anisotropy of 0.24 indicates that EMA undergoes subnanosecond rapid wobbling in the binding site of the ADP/ATP translocator.  相似文献   

19.
The molecular weight of the phosphate translocator isolated from spinach envelope membranes was measured in the nonionic detergent Triton X-100. The Stoke's radius of the protein-detergent complex was estimated by gel filtration. The partial specific volume was estimated by equilibrium centrifugation and by differential sedimentation in sucrose gradients containing H2O and 2H2O and the sedimentation coefficient was estimated from the same centrifugation experiments. The phosphate translocator-Triton X-100 complex has an apparent molecular weight of 177 500. Its high partial specific volume (0.86 cm3/g) suggests that bound detergent contributes significantly to the mass. Correcting for the bound detergent (1.9 g/g protein), a molecular weight of 61 000 for the protein moiety of the complex was calculated. These results suggest that the isolated phosphate translocator exists as a dimer. The shape of the dimer is described as a prolate ellipsoid of revolution with semiaxes calculated to be 6.59 and 1.59 nm in length.  相似文献   

20.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine has been analyzed by fast detergent fractionation of isolated frog heart cells. Digitonin fractionation (0.5 mg/ml, 10 s at 2 degrees C in 20 mM 4-morpholinepropanesulfonic acid/3 mM EDTA/230 mM mannitol medium) was used to separate mitochondria and myofilaments from cytosol. To separate myofilaments from the other cellular compartments. Triton X-100 was used (2%, 15 s in the same medium as digitonin). For either resting or beating cells the total cellular contents of ATP, ADP, creatine phosphate and creatine was similar, nevertheless the O2 consumption was 6-times higher. The compartmentation of these metabolites was also identical. Myofilaments contain 1.1 nmol ADP per mg total cellular proteins. In the cytosolic compartment the metabolite concentrations, all measured in nmol per mg total cellular proteins, were: ATP, 13; ADP, 0.25-0.05; creatine phosphate, 18.5 and creatine, 14. This indicated that the reaction catalyzed by creatine kinase was in a state of (or near) equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号