首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the presence of ATP, Mg2+, and arsenate, ATP sulfurylase from yeast will catalyze the formation of inorganic pyrophosphate. Inorganic pyrophosphate was detected by determination of orthophosphate in the presence of inorganic pyrophosphatase. Two moles of Pi were found for each molecule of ATP in the reaction mixture. The activity of ATP sulfurylase with arsenate as an activating anion was from 1 to 3% of the activity observed with molybdate.  相似文献   

2.
Homogeneous ATP sulfurylase from Penicillium chrysogenum has been reported to have an extremely low activity toward its physiological inorganic substrate, sulfate. This low activity is an artifact resulting from potent product inhibition by 5'-adenylylsulfate (APS) (Ki less than 0.25 microM). Assays based on 35S incorporation from 35SO4(2-) into charcoal-adsorbable [35S]APS are nonlinear with time, even in the presence of a large excess of inorganic pyrophosphatase. However, in the presence of excess APS kinase (along with excess pyrophosphatase), the ATP sulfurylase reaction is linear with time and the enzyme has a specific activity (Vmax) of 6 to 7 units mg protein-1 corresponding to an active site turnover number of at least 400 min-1. Monovalent oxyanions such as NO3-, ClO3-, ClO4-, and FSO3- are competitive with sulfate (or molybdate) and essentially uncompetitive with respect to MgATP. However, thiosulfate (SSO3(2-)), a true sulfate analog and dead-end inhibitor of the enzyme (competitive with sulfate or molybdate), exhibited clear noncompetitive inhibition against MgATP. Furthermore, APS was competitive with both MgATP and molybdate in the molybdolysis assay. These results suggest (a) that the mechanism of the normal forward reaction may be random rather than ordered and (b) that the monovalent oxyanions have a much greater affinity for the E X MgATP complex than for free E. In this respect, FSO3-, ClO4-, etc., are not true sulfate analogs although they might mimic an enzyme-bound species formed when MgATP is at the active site. The nonlinear ATP sulfurylase reaction progress curves (with APS accumulating in the presence of excess pyrophosphatase or PPi accumulating in the presence of excess APS kinase) were analyzed by means of "average velocity" plots based on an integrated rate equation. This new approach is useful for enzymes subject to potent product inhibition over a reaction time course in which the substrate concentrations do not change significantly. The analysis showed that ATP sulfurylase has an intrinsic specific activity of 6 to 7 units mg protein-1. Thus, the apparent stimulation of sulfurylase activity by APS kinase results from the continual removal of inhibitory APS rather than from an association of the two sulfate-activating enzymes to form a "3'-phospho-5'-adenylylsulfate synthetase" complex in which the sulfurylase has an increased catalytic activity. The progress curve analyses suggest that APS is competitive with both MgATP and sulfate, while MgPPi is a mixed-type inhibitor with respect to both substrates. The cumulative data point to a random sequence for the forward reaction with APS release being partially rate limiting.  相似文献   

3.
The activity of ATP sulfurylase, cysteine synthase, and cystathionine β-lyase was measured in crude leaf extracts, bundle sheath strands, and mesophyll and bundle sheath chloroplasts to determine the location of sulfate assimilation of C4 plant leaves. Almost all the ATP sulfurylase activity was located in the bundle sheath chloroplasts while cysteine synthase and cystathionine β-lyase activity was located, in different proportions, in both chloroplast types.

A new spectrophotometric assay for measuring ATP sulfurylase activity is also described.

  相似文献   

4.
ATP sulfurylase activity was partially purified from the swollen hypocotyl of beetroot (Beta vulgaris); activity was measured by sulfate-dependent PPi-ATP exchange. The ATP sulfurylase activity was separated from pyrophosphatase and ATPase activities which interfere with the assay of ATP sulfurylase activity. The ATP sulfurylase activity from hypocotyl tissue was invariably resolved into two approximately equal activities (hypocotyls I and II) by ion exchange chromatography and polyacrylamide gradient gel electrophoresis. Both enzymes catalyzed selenate- and sulfate-dependent PPi-ATP exchange; the affinity of hypocotyl II for these substrates was greater than for hypocotyl I. It is unlikely that the two activities arise by allelic variation or as an artifact of purification; they are most probably isoenzymes. Studies of the subcellular localization of the two hypocotyl enzymes were inconclusive.  相似文献   

5.
Adams CA  Rinne RW 《Plant physiology》1969,44(9):1241-1246
ATP sulfurylase activity varied greatly among different leaves on the soybean plant [Glycine max (L.) Meer.], and high levels of activity did not appear in the leaves until the seedlings were about 3 weeks old. In general, leaves from the top of the plant had a higher activity than leaves from the bottom of the plant. A much greater activity was found in soybean leaves than in soybean roots. The absence of sulfate in the nutrient solution resulted in higher enzyme activity in leaves from young plants and in lower activity in leaves from older plants. Over the growing season, however, ATP sulfurylase activity appeared to be related to sulfur content of the leaf. Several other plant species also had measurable levels of ATP sulfurylase.  相似文献   

6.
Adenosine diphosphate sulphurylase activity in leaf tissue   总被引:6,自引:3,他引:3       下载免费PDF全文
1. A new method is described for the assay of ADP sulphurylase. The method involves sulphate-dependent [(32)P]P(i)-ADP exchange; the method is simpler, more sensitive and more direct than the method involving adenosine 5'-sulphatophosphate-dependent uptake of P(i). 2. ADP sulphurylase activity was demonstrated in crude extracts of leaf tissue from a range of plants. Crude spinach extract catalysed the sulphate-dependent synthesis of [(32)P]ADP from [(32)P]P(i); spinach extracts did not catalyse sulphate-dependent AMP-P(i), ADP-PP(i) or ATP-P(i) exchange under standard assay conditions. ADP sulphurylase activity in spinach leaf tissue was associated with chloroplasts and was liberated by sonication. 3. Some elementary kinetics of crude spinach leaf and purified yeast ADP sulphurylases in the standard assay are described; addition of Ba(2+) was necessary to minimize endogenous P(i)-ADP exchange of the yeast enzyme and crude extracts of winter-grown spinach. 4. Spinach leaf ADP sulphurylase was activated by Ba(2+) and Ca(2+); Mg(2+) was ineffective. The yeast enzyme was also activated by Ba(2+). The activity of both enzymes decreased with increasing ionic strength. 5. Purified yeast and spinach leaf ADP sulphurylases were sensitive to thiol-group reagents and fluoride. The pH optimum was 8. ATP inhibited sulphate-dependent P(i)-ADP exchange. Neither selenate nor molybdate inhibited sulphate-dependent P(i)-ADP exchange and crude spinach extracts did not catalyse selenate-dependent P(i)-ADP exchange. 6. The presence of ADP sulphurylase activity jeopardizes the enzymic synthesis of adenosine 5'-sulphatophosphate from ATP and sulphate with purified ATP sulphurylase and pyrophosphatase.  相似文献   

7.
The sulfate-dependent pyrophosphate exchange reaction has been re-examined and confirmed. Standard assay conditions for measuring ATP sulfurylase by sulfate-dependent pyrophosphate exchange are described and some properties of the enzyme (measured in crude dialyzed extracts) are reported. This method has many advantages over the well established molybdate method.  相似文献   

8.
9.
A real-time, sensitive, and simple assay for detection and quantification of adenosine triphosphate sulfurylase (ATP:sulfate adenylytransferase, EC 2.7.7.4) activity has been developed. The method is based on detection of ATP generated in the ATP sulfurylase reaction between APS and PPi by the firefly luciferase system. For the Saccharomyces cerevisiae ATP sulfurylase, the concentrations of APS and PPi at the half-maximal rate were found to be about 0.5 and 7 microM, respectively. The assay is sensitive and yields linear response between 0.1 microU and 50 mU. The method can be used for monitoring and quantification of recombinant ATP sulfurylase activity in Escherichia coli lysate, as well as for detection of the activity during different purification procedures.  相似文献   

10.
Selenium Metabolism in Neptunia amplexicaulis   总被引:4,自引:0,他引:4       下载免费PDF全文
ATP sulfurylase (EC 2.7.7.4), cysteinyl-tRNA synthetase (EC 6.1.1.16), and methionyl-tRNA synthetase (EC 6.1.1.10) from Neptunia amplexicaulis have been purified approximately 162-, 140- and 185-fold, respectively. Purified ATP sulfurylase in the presence of purified inorganic pyrophosphatase catalyzed the incorporation of sulfate into adenosine 5′-phosphosulfate; evidence of an analogous reaction with selenate is presented. Crude extracts catalyzed both the sulfate- and the adenosine 5′-phosphosulfate-dependent NADH oxidation in the adenosine 5′-phosphosulfate kinase assay of Burnell and Whatley (1977 Biochim Biophys Acta 481: 266-278), but an analogous reaction with selenate could not be detected. Both purified cysteinyl-tRNA synthetase and methionyl-tRNA synthetase used selenium-containing analogs as substrates in both the ATP-pyrophosphate exchange and the aminoacylation assays.  相似文献   

11.
Sulphite reductase and ATP sulfurylase activities were compared in low- and high-sulphite forming wine yeasts grown in a synthetic medium. Reduced nicotinamide adenine dinucleotide phosphate-linked sulphite reductase activity was not detected in extracts from high-sulphite forming yeasts, although high activity was found in extracts from low-sulphite formers. High-sulphite forming yeasts had elevated ATP sulfurylase activity compared to the low-sulphite formers indicating derepression of enzyme synthesis. A high rate of activation and reduction of sulphate to sulphite was considered the main factor responsible for the accumulation of sulphite by high-sulphite forming wine yeasts.Over a 5-day fermentation period, sulphite accumulation in the growth medium by low-sulphite forming yeasts was correlated with ATP sulfurylase activity.Fellow of the National Research Advisory Council, Wellington, New Zealand  相似文献   

12.
The decrease in extractable activity of ribuloscbisphosphate carboxylase (EC 4.1.1.39), ATP sulfurylase (EC 2.7.7.4) and adenosine 5'-phosphosulfate sulfotransferase and the content in chlorophyll and protein was compared in leaves of cloned beech trees ( Fagus sylvatica L.) during autumnal senescence. Leaves excised at the same time but containing different amounts of chlorophyll gave extracts with correspondingly varying amounts of ribulosebisphosphate carboxylase activity. Leaves which had almost completely lost this enzyme activity contained still appreciable ATP sulfurylase and adenosine 5'-phosphosulfate sulfotransferase activity and soluble protein. For all components determined, there was a period lasting until mid or end of October during which there was no or only a small decrease. They were then all lost rapidly from the leaves. The specific activity of ribulosebisphosphate carboxylase decreased during this phase of rapid loss, whereas it remained essentially constant for ATP sulfurylase and adenosine 5'-phosphosulfate sulfotransferase. During this period, the mean half life of ribulosebisphosphate carboxylase was shorter than the one of ATP sulfurylase and of adenosine 5'-phosphosulfate sulfotransferase. These experiments clearly show that ribulosebisphosphate carboxylase was preferentially lost from beech leaves during autumnal senescence as compared to ATP sulfurylase and adenosine 5'-phosphosulfate sulfotransferase.  相似文献   

13.
Assays of alkaline pyrophosphatase activity in crude plant extracts are inhibited by soluble calcium coextracted with the enzyme from leaf tissues. Calcium concentrations in most extracts are high enough to interfere seriously with the assay.  相似文献   

14.
A continuous, coupled, spectrophotometric assay is described in which the enzyme ATP sulfurylase is employed to measure the concentration of inorganic pyrophosphate (PPi) at equilibrium with known concentrations of inorganic orthophosphate (Pi) in the presence of excess inorganic pyrophosphatase (PPitase). In agreement with previous reports, the apparent equilibrium constant (Keq,app) of the PPi hydrolysis reaction was shown to decrease as the concentration of Mg2+ is increased. At pH 7.3, 30 degrees C, in the presence of 150 mM NaCl and 1 mM free Mg2+, Keq,app (calculated as [Pi]t2/[PPi]t) was 1950. Measurements of Keq,app at different total concentrations of Mg2+ and Pi permitted the determination of K0, the dissociation constant of the Mg-Pi complex. In 0.05 M Tris-Cl, pH 8.0, at 30 degrees C, K0 was 3.6 mM. In the presence of excess ATP sulfurylase, yeast PPitase catalyzed PPi formation from Pi with a specific activity (Vmax) of 9 units X mg protein-1 at pH 8.0, 30 degrees C, and 1 mM free Mg2+. Half-maximum reverse reaction velocity was observed at a total Pi concentration of 18 mM. (Under the same conditions, Vmax of the PPi hydrolysis reaction was 530 units X mg protein-1.) A radiochemical end point ("reaction-to-completion") assay for measuring unknown concentrations of PPi was devised. In the presence of excess 35S-adenosine-5'-phosphosulfate ([35S]APS) as the cosubstrate, 35SO2-4 formation was stoichiometric with added PPi. (The 35SO2-4 and [35S]APS are separated by adsorption of the latter onto charcoal.) The sensitivity of the assay can be adjusted by varying the specific radioactivity of the [35S]APS. In the absence of interfering substances, as little as 2 pmol of PPi per 1.0 ml assay volume can be measured. The sensitivity of the assay is reduced in the presence of ATP plus perchlorate (which synergistically inhibit the enzyme). However, if the bulk of the ATP is removed from perchloric acid extracts of tissues with glucose and hexokinase, initial intracellular levels as low as 1 microM can be measured. The possibility that most of the cellular PPi extracted with perchloric acid was originally enzyme bound is discussed.  相似文献   

15.
ATP sulfurylase, the first enzyme in the sulfate assimilation pathway of plants, catalyzes the formation of adenosine phosphosulfate from ATP and sulfate. Here we report the cloning of two cDNAs encoding ATP sulfurylase (APS1 and APS2) from Camellia sinensis. They were isolated by RT-PCR and RACE-PCR reactions. The expression of APS1 and APS2 are correlated with the presence of ATP sulfurylase enzyme activity in cell extracts. APS1 is a 1415-bp cDNA with an open reading frame predicted to encode a 360-amino acid, 40.5kD protein; APS2 is a 1706-bp cDNA with an open reading frame to encode a 465-amino acid, 51.8kD protein. The predicted amino acid sequences of APS1 and APS2 have high similarity to ATP sulfurylases of Medicago truncatula and Solanum tuberosum, with 86% and 84% identity respectively. However, they share only 59.6% identity with each other. The enzyme extracts prepared from recombinant Escherichia coli containing Camellia sinensis APS genes had significant enzyme activity.  相似文献   

16.
T Leustek  M Murillo    M Cervantes 《Plant physiology》1994,105(3):897-902
ATP sulfurylase, the first enzyme in the sulfate assimilation pathway of plants, catalyzes the formation of adenosine phosphosulfate from ATP and sulfate. Here we report the cloning of a cDNA encoding ATP sulfurylase (APS1) from Arabidopsis thaliana. APS1 was isolated by its ability to alleviate the methionine requirement of an ATP sulfurylase mutant strain of Saccharomyces cerevisiae (yeast). Expression of APS1 correlated with the presence of ATP sulfurylase enzyme activity in cell extracts. APS1 is a 1748-bp cDNA with an open reading frame predicted to encode a 463-amino acid, 51,372-D protein. The predicted amino acid sequence of APS1 is similar to ATP sulfurylase of S. cerevisiae, with which it is 25% identical. Two lines of evidence indicate that APS1 encodes a chloroplast form of ATP sulfurylase. Its predicted amino-terminal sequence resembles a chloroplast transit peptide; and the APS1 polypeptide, synthesized in vitro, is capable of entering isolated intact chloroplasts. Several genomic DNA fragments that hybridize with the APS1 probe were identified. The APS1 cDNA hybridizes to three species of mRNA in leaves (1.85, 1.60, and 1.20 kb) and to a single species of mRNA in roots (1.85 kb).  相似文献   

17.
An assay method for ATP sulfurylase is presented which employs Na2(35)SO4 as a substrate and measures the production of labeled adenosine 5'-phosphosulfate and 3'-phosphoadenosine 5'-phosphosulfate by low-voltage, hanging paper strip electrophoresis. The method is applicable to crude bacterial or mammalian extracts and accurately measures picomole amounts of product(s). Na2(75SeO4 can also be employed as a substrate, if the unstable radioactive product, adenosine 5'-phosphoselenate, is converted to elemental 75Se degrees by inclusion of reduced glutathione in the reaction mixture. The same paper strip electrophoretic technique can then be used to separate 75Se degrees from the radiolabeled substrate. The method also has utility for measuring any direct reduction by crude microbial extracts of radioactive selenate to selenite, independent of ATP sulfurylase.  相似文献   

18.
Molecular studies of enzymes involved in sulfite oxidation in Acidithiobacillus ferrooxidans have not yet been developed, especially in the ATP sulfurylase (ATPS) of these acidophilus tiobacilli that have importance in biomining. This enzyme synthesizes ATP and sulfate from adenosine phosphosulfate (APS) and pyrophosphate (PPi), final stage of the sulfite oxidation by these organisms in order to obtain energy. The atpS gene (1674 bp) encoding the ATPS from Acidithiobacillus ferrooxidans ATCC 23270 was amplified using PCR, cloned in the pET101-TOPO plasmid, sequenced and expressed in Escherichia coli obtaining a 63.5 kDa ATPS recombinant protein according to SDS-PAGE analysis. The bioinformatics and phylogenetic analyses determined that the ATPS from A. ferrooxidans presents ATP sulfurylase (ATS) and APS kinase (ASK) domains similar to ATPS of Aquifex aeolicus, probably of a more ancestral origin. Enzyme activity towards ATP formation was determined by quantification of ATP formed from E. coli cell extracts, using a bioluminescence assay based on light emission by the luciferase enzyme. Our results demonstrate that the recombinant ATP sulfurylase from A. ferrooxidans presents an enzymatic activity for the formation of ATP and sulfate, and possibly is a bifunctional enzyme due to its high homology to the ASK domain from A. aeolicus and true kinases.  相似文献   

19.
The activity of adenosine 5′ triphosphate sulfurylase was determined in crabgrass mesophyll cells, bundle sheath strands, and whole leaf extracts. The enzyme was assayed by following molybdate-dependent pyrophosphate release from ATP, 35SO42− incorporation into adenosine 5′ phosphosulfate, and ATP synthesis dependent upon adenosine 5′ phosphosulfate and inorganic pyrophosphate. With all assays, greater than 90% of the activity was found in extracts from bundle sheath strands. The activities in whole leaf extracts were consistently intermediate between the activities of mesophyll and bundle sheath extracts and extract-mixing experiments gave no indication of enzyme activation or inhibition in vitro. Whole leaf activities were several hundred-fold less than concurrent measurements of ribulose 1,5-bisphosphate and phosphoenolpyruvate carboxylase activities, which is interpreted as being consistent with the relative amounts of elemental carbon and sulfur found in higher plants. A hypothesis is presented for the intercellular compartmentation of sulfur assimilation in relationship to NO3 and CO2 assimilation in leaves of C4 plants.  相似文献   

20.
Biosynthesis of the undersulfated proteoglycan found in brachymorphic mouse (bm/ bm) cartilage has been investigated. Similar amounts of cartilage proteoglycan core protein, as measured by radioimmune inhibition assay, and comparable activity levels of four of the glycosyltransferases requisite for synthesis of chondroitin sulfate chains were found in cartilage homogenates from neonatal bm/bm and normal mice, suggesting normal production of glycosylated core protein acceptor for sulfation. When incubated with 35S-labeled 3′-phosphoadenosine 5′-phosphosulfate (PAPS), bm/bm cartilage extracts showed a higher than control level of sulfotransferase activity. In contrast, when synthesis was initiated from ATP and 35SO42?, mutant cartilage extracts showed lower incorporation of 35SO42? into endogenous chondroitin sulfate proteoglycan (19% of control level) and greatly reduced formation of PAPS (10% of control level). Results from coincubations of normal and mutant cartilage extracts exhibited intermediate levels of sulfate incorporation into PAPS and endogenous acceptors, suggesting the absence of an inhibitor for sulfate-activating enzymes or sulfotransferases. Degradation rates of 35S]PAPS and of 35S-labeled adenosine 5′-phosphosulfate (APS) were comparable in bm/bm and normal cartilage extracts. Specific assays for both ATP sulfurylase (sulfate adenylyltransferase; ATP:sulfate adenylyltransferase, EC 2.7.7.4) and APS kinase (adenylylsulfate kinase; ATP:adenylylsulfate 3′-phosphotransferase, EC 2.7.1.25) showed decreases in the former (50% of control) and the latter (10–15% of control) enzyme activities in bm/bm cartilage extracts. Both enzyme activities were reduced to intermediate levels in extracts of cartilage from heterozygous brachymorphic mice (ATP-sulfurylase, 80% of control; APS kinase, 40–70% of control). Furthermore, the moderate reduction in ATP sulfurylase activity in bm/bm cartilage extracts was accompanied by increased lability to freezing and thawing of the residual activity of this enzyme. These results indicate that under-sulfation of chondroitin sulfate proteoglycan in bm/bm cartilage is due to a defect in synthesis of the sulfate donor (PAPS), resulting from diminished activities of both ATP sulfurylase and APS kinase, although the reduced activity of the latter enzyme seems to be primarily responsible for the defect in PAPS synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号