首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is becoming apparent that the hormone leptin plays an important role in modulating hippocampal function. Indeed, leptin enhances NMDA receptor activation and promotes hippocampal long-term potentiation (LTP). Furthermore, obese rodents with dysfunctional leptin receptors display impairments in hippocampal synaptic plasticity. Here we demonstrate that under conditions of enhanced excitability (evoked in Mg2+-free medium or following blockade of GABA(A) receptors), leptin induces a novel form of long-term depression (LTD) in area CA1 of the hippocampus. Leptin-induced LTD was markedly attenuated in the presence of D-(-)-2-Amino-5-Phosphonopentanoic acid (D-AP5), suggesting that it is dependent on the synaptic activation of NMDA receptors. In addition, low-frequency stimulus-evoked LTD occluded the effects of leptin. In contrast, metabotropic glutamate receptors (mGluRs) did not contribute to leptin-induced LTD as mGluR antagonists failed to either prevent or reverse this process. The signalling mechanisms underlying leptin-induced LTD were independent of the Ras-Raf-mitogen-activated protein kinase signalling pathway, but were markedly enhanced following inhibition of either phosphoinositide 3-kinase or protein phosphatases 1 and 2A. These data indicate that under conditions of enhanced excitability, leptin induces a novel form of homosynaptic LTD, which further underscores the proposed key role for this hormone in modulating NMDA receptor-dependent hippocampal synaptic plasticity.  相似文献   

2.
Previous studies have shown that brief application of group I metabotropic glutamate receptor (mGluR) agonist (S)-3, 5-dihydroxyphenylglycine (DHPG) to hippocampal slices can induce a chemical form of long-term depression (DHPG-LTD) in the hippocampal CA1 region; however, the expression mechanisms of this LTD remain unclear. We show here that the expression of DHPG-LTD can be specifically reversed by application of the broad-spectrum mGluR antagonists, (S)-alpha-methyl-4-carboxyphenylglycine (MCPG) and LY341495, and mGluR5 antagonist, 2-methyl-6-(phenylethyl)pyridine, but not by NMDA receptor antagonist, D-2-amino-5-phosphonopentanoic acid, mGluR1 antagonist, LY367385, group II mGluR antagonist, (2S)-alpha-ethylglutamic acid, or group III mGluR antagonist, (S)-2-amino-2-methyl-4-phosphonobutanic acid (MAP4). In addition, the ability of MCPG to reverse DHPG-LTD was mimicked by the protein tyrosine phosphatase inhibitors, phenylarsine oxide and orthovanadate, but not phospholipase C inhibitor, U73122, protein kinase C inhibitor, bisindolylmaleimide 1, p38 mitogen-activated protein kinase inhibitor, SB203580, or protein phosphatases 1/2 A inhibitor, okadaic acid. Moreover, MCPG reversed the DHPG-LTD without affecting the paired-pulse facilitation. The expression of DHPG-LTD was associated with the reduction of both tyrosine phosphorylation and surface expression of AMPA receptor GluR2 subunits. Together, these results suggest that sustained activation of mGluR5 and in turn triggering a protein tyrosine phosphatase-dependent regulation of postsynaptic expression of AMPA receptors may contribute to the expression of DHPG-LTD.  相似文献   

3.
The acute hippocampal slice preparation has been widely used to study the cellular mechanisms underlying activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although protein phosphorylation has a key role in LTP and LTD, little is known about how protein phosphorylation might be altered in hippocampal slices maintained in vitro. To begin to address this issue, we examined the effects of slicing and in vitro maintenance on phosphorylation of six proteins involved in LTP and/or LTD. We found that AMPA receptor (AMPAR) glutamate receptor 1 (GluR1) subunits are persistently dephosphorylated in slices maintained in vitro for up to 8 h. alpha calcium/calmodulin-dependent kinase II (alphaCamKII) was also strongly dephosphorylated during the first 3 h in vitro but thereafter recovered to near control levels. In contrast, phosphorylation of the extracellular signal-regulated kinase ERK2, the ERK kinase MEK, proline-rich tyrosine kinase 2 (Pyk2), and Src family kinases was significantly, but transiently, increased. Electrophysiological experiments revealed that the induction of LTD by low-frequency synaptic stimulation was sensitive to time in vitro. These findings indicate that phosphorylation of proteins involved in N-methyl-D-aspartate (NMDA) receptor-dependent forms of synaptic plasticity is altered in hippocampal slices and suggest that some of these changes can significantly influence the induction of LTD.  相似文献   

4.
Ukil A  Kar S  Srivastav S  Ghosh K  Das PK 《PloS one》2011,6(12):e29062
We earlier showed that 18β-glycyrrhetinic acid (GRA), a pentacyclic triterpenoid from licorice root, could completely cure visceral leishmaniasis in BALB/c mouse model. This was associated with induction of nitric oxide and proinflammatory cytokine production through the up regulation of NF-κB. In the present study we tried to decipher the underlying cellular mechanisms of the curative effect of GRA. Analysis of MAP kinase pathways revealed that GRA caused strong activation of p38 and to a lesser extent, ERK in bone marrow-derived macrophages (BMDM). Almost complete abrogation of GRA-induced cytokine production in presence of specific inhibitors of p38 and ERK1/2 confirmed the involvement of these MAP kinases in GRA-mediated responses. GRA induced mitogen- and stress-activated protein kinase (MSK1) activity in a time-dependent manner suggested that GRA-mediated NF-κB transactivation is mediated by p38, ERK and MSK1 pathway. As kinase/phosphatase balance plays an important role in modulating infection, the effect of GRA on MAPK directed phosphatases (MKP) was studied. GRA markedly reduced the expression and activities of three phosphatases, MKP1, MKP3 and protein phosphatase 2A (PP2A) along with a substantial reduction of p38 and ERK dephosphorylation in infected BMDM. Similarly in the in vivo situation, GRA treatment of L. donovani-infected BALB/c mice caused marked reduction of spleen parasite burden associated with concomitant decrease of individual phosphatase levels. However, activation of kinases also played an important role as the protective effect of GRA was significantly abrogated by pharmacological inhibition of p38 and ERK pathway. Curative effect of GRA may, therefore, be associated with restoration of proper cellular kinase/phosphatase balance, rather than modulation of either kinases or phosphatases.  相似文献   

5.
Activation of extracellular signal-regulated kinase (ERK) is known to be regulated by cell adhesion, namely "anchorage dependence". Most studies on the anchorage-dependent regulation have focused on the upstream activating components. We previously reported that the focal adhesion protein vinexin beta can induce the anchorage-independent activation of ERK2. We show here that vinexin beta-induced anchorage-independent activation of ERK2 involves prevention of the dephosphorylation of ERK2, but not the promotion of MEK1 or Raf1 activity. Furthermore, knockdown of vinexin beta resulted in a faster dephosphorylation of ERK2 in A549 cells. Moreover, the coexpression of MKP3/rVH6, an ERK2 specific phosphatase, suppressed the anchorage-independent activation of ERK2 induced by vinexin beta. These results suggest that vinexin beta can prevent the dephosphorylation of ERK2 stimulated by cell detachment, leading to the anchorage-independent activation of ERK2. Furthermore, we found that phosphatase activity directed against activated ERK2 was higher in suspended cells than in adherent cells. In addition, orthovanadate efficiently induces anchorage-independent activation of ERK2 without marked activation of MEK1 in NIH3T3 cells. These observations suggest that the anchorage dependence of ERK1/2 activation is regulated not only by upstream kinases, Raf1 and MEK, but also by phosphatases acting against ERK1/2 and that vinexin beta can induce anchorage-independent activation of ERK by preventing the inactivation of ERK1/2.  相似文献   

6.
Protein phosphorylation, regulated by protein kinases and protein phosphatases, is crucial for protein structure and function in eukaryotic organisms. Type 2C protein phosphatase (PP2C) belongs to the serine/threonine phosphatase family and its activities require the presence of a divalent magnesium or manganese ion. In the present study, a potential PP2C phosphatase (SjPtc1) was identified in Schistosoma japonicum. The SjPTC1 gene was found to be highly expressed in adult worms. A recombinant SjPtc1 protein showed typical PP2C phosphatase activity. Heterologous SjPTC1 expression reversed the sensitivity of yeast ptc1 null mutants toward H2O2, ZnCl2, cisplatin, and rapamycin. Collectively, the results suggest that SjPtc1 may take part in the regulation of cellular responses to oxidative stress, DNA damage stress, and the TOR (target of rapamycin) signaling pathway.  相似文献   

7.
Abstract: Triggering of the cell adhesion molecules L1 or N-CAM in a nerve growth cone membrane fraction from fetal rat brain with purified L1 or N-CAM or specific antibodies decreases the steady-state levels of protein tyrosine phosphorylation in the membranes. Here we report that triggering of L1 and N-CAM in the growth cone-enriched membrane fraction with a subset of antibodies directed against the extracellular region of L1 and N-CAM elicited dephosphorylation of endogenous protein substrates, indicating the presence of a cell adhesion molecule-activated phosphatase. The most prominent substrates were a membrane-associated 200-kDa protein and tubulin, both of which were dephosphorylated on tyrosine and serine/threonine residues in response to L1 or N-CAM triggering. The antibody-induced phosphatase was inhibited by agents that blocked tyrosine and serine/threonine phosphatases, including sodium orthovanadate, vanadyl sulfate, zinc cations, heparin, and sodium pyrophosphate. Purified L1 and N-CAM fragments and other antibodies reacting with the extracellular region of these adhesion molecules did not activate the phosphatase but did inhibit tyrosine phosphorylation. These properties suggested that triggering of L1 and N-CAM can lead to either phosphatase activation or tyrosine kinase inhibition in growth cone membranes. These findings implicate protein phosphatases in addition to tyrosine kinases as components of L1 and N-CAM intracellular signaling pathways in growth cones.  相似文献   

8.
Reversible protein phosphorylation of serine, threonine, and tyrosine residues by protein kinases and phosphatases is important for the regulation of cellular signal transduction and controls many cellular functions. Disturbances in this regulation have been implicated in a growing number of diseases, making kinases and phosphatases useful targets for therapeutic intervention. The suitability of surface plasmon resonance (SPR) technology has been widely demonstrated in many drug discovery applications. A novel and straightforward methodology is presented for analyzing small molecule binding to two serine/threonine phosphatases, PP1 and PP2B (calcineurin), and to the prototypic tyrosine phosphatase, PTP1B. Emphasis was placed on investigating the immobilization conditions of the phosphatases by using reducing conditions, inhibitors and metal ions. A comparison of inhibitor binding, either to phosphatase (PP2B) alone or in complex with the regulatory protein subunit calmodulin, revealed different kinetics. The methodology was also used to test inhibitor specificity toward different phosphatases. Inhibition of regulatory protein PP-inhibitor-2 binding to PP1 by a small molecule inhibitor was demonstrated. This type of information, together with data on compound binding that is independent of enzyme activity and in which affinities are resolved into kinetic rate constants, may be of great significance for the development of highly specific and high-affinity phosphatase inhibitors.  相似文献   

9.
We developed a method for the detection of phosphatase activity using fluorogenic substrates after polyacrylamide gel electrophoresis. When phosphatases such as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), protein phosphatase 2C (PP2C), protein phosphatase 5 (PP5), and alkaline phosphatase were resolved by polyacrylamide gel electrophoresis in the absence of SDS and the gel was incubated with a fluorogenic substrate such as 4-methylumbelliferyl phosphate (MUP), all of these phosphatase activities could be detected in situ. Although 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as well as MUP could be used as a fluorogenic substrate for an in-gel assay, MUP exhibited lower background fluorescence. Using this procedure, several fluorescent bands that correspond to endogenous phosphatases were observed after electrophoresis of various crude samples. The in-gel phosphatase assay could also be used to detect protein phosphatases resolved by SDS-polyacrylamide gel electrophoresis. In this case, however, the denaturation/renaturation process of resolved proteins was necessary for the detection of phosphatase activity. This procedure could be used for detection of renaturable protein phosphatases such as CaMKP and some other phosphatases expressed in cell extracts. The present fluorescent in-gel phosphatase assay is very useful, since no radioactive compounds or no special apparatus are required.  相似文献   

10.
Given the importance of protein phosphorylation in the context of cellular functions, abnormal protein phosphatase activity has been implicated in several diseases, including cancer. These critical roles of protein phosphatases qualify them as potential targets for the development of medicinal compounds that possess distinct modes of action such as violacein. In this work, studies with this natural indolic pigment at a concentration of 10.0 μmol L? 1 demonstrated a 20% activation of total protein phosphatase extracted from human lymphocytes. Although no alteration was observed on protein tyrosine phosphatase (CD45), 30% of inhibition was achieved in cytoplasmatic protein phosphatase activity after incubation with 10.0 μmol L? 1 violacein. Additionally, 5.0 μmol L? 1 of violacein inhibited by 50% the serum tartrate-resistant acid phosphatase activity. Violacein presented toxic effect on lymphocytes with IC50 values of 3 and 10 μmol L? 1 for protein content and protein phosphatase activity, respectively. These findings suggest an important role for protein phosphatases in the mechanisms controlling proliferation and cell death.  相似文献   

11.
Synaptic plasticity is an important mechanism that underlies learning and cognition. Protein phosphorylation by kinases and dephosphorylation by phosphatases play critical roles in the activity-dependent alteration of synaptic plasticity. In this study, we report that Wip1, a protein phosphatase, is essential for long-term potentiation (LTP) and long-term depression (LTD) processes. Wip1-deletion suppresses LTP and enhances LTD in the hippocampus CA1 area. Wip1 deficiency-induced aberrant elevation of CaMKII T286/287 and T305 phosphorylation underlies these dysfunctions. Moreover, we showed that Wip1 modulates CaMKII dephosphorylation. Wip1?/? mice exhibit abnormal GluR1 membrane expression, which could be reversed by the application of a CaMKII inhibitor, indicating that Wip1/CaMKII signaling is crucial for synaptic plasticity. Together, our results demonstrate that Wip1 phosphatase plays a vital role in regulating hippocampal synaptic plasticity by modulating the phosphorylation of CaMKII.  相似文献   

12.
Recent work has demonstrated that brief application of insulin to hippocampal slices can induce a novel form of long-term depression (insulin-LTD) in the CA1 region of the hippocampus; however, the molecular details of how insulin triggers LTD remain unclear. Using electrophysiological and biochemical approaches in the hippocampal slices, we show here that insulin-LTD (i) is specific to 3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor- but not NMDA receptor-mediated synaptic transmission; (ii) is induced and expressed postsynaptically but does not require the activation of ionotropic and metabotropic glutamate receptors; (iii) requires a concomitant Ca(2+) influx through l-type voltage-activated Ca(2+) channels (VACCs) and the release of Ca(2+) from intracellular stores; (iv) requires the series of protein kinases, including protein tyrosine kinase (PTK), phosphatidylinositol 3-kinase (PI3K), and protein kinase C (PKC); (v) is mechanistically distinct from low-frequency stimulation-induced LTD (LFS-LTD) and independent on protein phosphatase 1/2 A (PP1/2 A) and PP2B activation; (vi) is dependent on a rapamycin-sensitive local translation of dendritic mRNA, and (vii) is associated with a persistent decrease in the surface expression of GluR2 subunit. These results suggest that a PI3K/PKC-dependent insulin signaling, which controls postsynaptic surface AMPA receptor numbers through PP-independent endocytosis, may be a major expression mechanism of insulin-LTD in hippocampal CA1 neurons.  相似文献   

13.
Semaphorin-4D (Sema4D), a member of class 4 membrane-bound Semaphorins, acts as a chemorepellant to the axons of retinal ganglion cells and hippocampal neurons. Plexin-B1, a neuronal Sema4D receptor, associates with either one of receptor tyrosine kinases, c-Met or ErbB2, to mediate Sema4D-signaling. In contrast to this significance, the involvement of protein tyrosine phosphatases in Semaphorin-signaling remains unknown. We here show that Src homology 2-containing protein-tyrosine phosphatase 2 (SHP2) participates in Sema4D-signaling. SHP2 was localized in the growth cones of chick embryonic retinal ganglion neurons. Phenylarsine oxide, a protein tyrosine phosphatase inhibitor, suppressed Sema4D-induced contractile response in COS-7 cells expressing Plexin-B1. Ectopic expression of a phosphatase-inactive mutant of SHP2 in the retinal ganglion cells attenuated Sema4D-induced growth cone collapse response. A SHP1/2 specific inhibitor, 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), also suppressed this collapse response. These results suggest that SHP2-mediated tyrosine dephosphorylation is an important step in Sema4D-induced axon repulsion.  相似文献   

14.
Using autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) as substrate, we now find that long-term potentian (LTP) induction and maintenance are also associated with a significant decrease in calyculin A-sensitive protein phosphatase (protein phosphatase 2A) activity, without changes in Mg2+-dependent protein phosphatase (protein phosphatase 2C) activity. This decrease in protein phosphatase 2A activity was prevented when LTP induction was inhibited by treatment with calmidazolium or D-2-amino-5-phosphonopentanoic acid. In addition, the application of high-frequency stimulation to 32P-labeled hippocampal slices resulted in increases in the phosphorylation of a 55-kDa protein immunoprecipitated with anti-phosphatase 2A antibodies. Use of a specific antibody revealed that the 55-kDa protein is the B'alpha subunit of protein phosphatase 2A. Following purification of brain protein phosphatase 2A, the B'alpha subunit was phosphorylated by CaM kinase II, an event that led to the reduction of protein phosphatase 2A activity. These results suggest that the decreased activity in protein phosphatase 2A following LTP induction contributes to the maintenance of constitutively active CaM kinase II and to the long-lasting increase in phosphorylation of synaptic components implicated in LTP.  相似文献   

15.
N-Methyl D-aspartate (NMDA) receptor activation of extracellular-signal regulated kinase (ERK) was examined in primary cortical cultures. Tetrodotoxin, NMDA receptor antagonists, or reduced extracellular calcium (0.1 mm) greatly decreased basal levels of phospho-ERK2, indicating that activity-dependent activation of NMDA receptors maintained a high level of basal ERK2 activation. This activity-dependent activation of phospho-ERK2 was blocked by pertussis toxin and inhibition of calcium/calmodulin-dependent kinase II and phosphatidylinositol 3-kinase but not by inhibition of protein kinase C or cAMP-dependent protein kinase. Addition of a calcium ionophore or 100 microm NMDA decreased phospho-ERK2 in the presence of 1 mm extracellular calcium but enhanced phospho-ERK2 in 0.1 mm extracellular calcium. The reduction in basal phospho-ERK2 by 100 microm NMDA was also reflected as a decrease in phospho-cAMP response element-binding protein. Inhibition of tyrosine phosphatases and serine/threonine phosphatases protein phosphatase 1 (PP1), PP2A, and PP2B did not prevent the inhibitory effect of NMDA. In the presence of tetrodotoxin, NMDA produced a bell-shaped dose-response curve with stimulation of phospho-ERK2 at 10, 25, and 50 microm NMDA and reduced stimulation at 100 microm NMDA. NMDA (50 microm) stimulation of phospho-ERK2 was completely blocked by pertussis toxin and inhibitors of phosphatidylinositol 3-kinase and was partially blocked by a calcium/calmodulin-dependent kinase II inhibitor. These results suggests that NMDA receptors can bidirectionally control ERK signaling.  相似文献   

16.
Okadaic acid is an inhibitor of the protein Ser/Thr phosphatases PP1 and PP2A, which blocks the activation of extracellular signal-regulated protein kinase 5 (ERK5), a member of the MAP kinase family activated by growth factors and several types of stressors. The blocking of ERK5 activation by okadaic acid was observed in HeLa cells exposed to epidermal growth factor and H(2)O(2) as well as in PC12 cells stimulated by nerve growth factor and H(2)O(2). Calyculin A, another PP1 and PP2A inhibitor, behaved similarly although these compounds are not structurally related. This suggests that either PP1 or PP2A or both are necessary for ERK5 activation. Protein kinase C (PKC) acts as a negative regulator of the ERK5 activation pathway, however our data suggest that the effects of PKC and the phosphatase are unrelated.  相似文献   

17.
To analyze a variety of protein phosphatases, we developed phosphorylated TandeMBP (P-TandeMBP), in which two different mouse myelin basic protein isoforms were fused in tandem, as a protein phosphatase substrate. P-TandeMBP was prepared efficiently in four steps: (1) phosphorylation of TandeMBP by a protein kinase mixture (Ca2+/calmodulin-dependent protein kinase Iδ, casein kinase 1δ, and extracellular signal-regulated kinase 2); (2) precipitation of both P-TandeMBP and protein kinases to remove ATP, Pi, and ADP; (3) acid extraction of P-TandeMBP with HCl to remove protein kinases; and (4) neutralization of the solution that contains P-TandeMBP with Tris. In combination with the malachite green assay, P-TandeMBP can be used to detect protein phosphatase activity without using radioactive materials. Moreover, P-TandeMBP served as an efficient substrate for PPM family phosphatases (PPM1A, PPM1B, PPM1D, PPM1F, PPM1G, PPM1H, PPM1K, and PPM1M) and PPP family phosphatase PP5. Various phosphatase activities were also detected with high sensitivity in gel filtration fractions from mouse brain using P-TandeMBP. These results indicate that P-TandeMBP might be a powerful tool for the detection of protein phosphatase activities.  相似文献   

18.
We have established an assay to measure protein phosphatase activity in mouse oocytes using [32P]-radiolabeled phosphorylase a as the substrate. Removal of the radiolabel from the substrate in vitro was linear with time and could be inhibited totally by the addition of okadaic acid (inhibitor of type 1 and type 2 protein phosphatases), or partially by protein inhibitor 2 (inhibitor of type 1 protein phosphatases). We performed a detailed study of the activity of type 2A protein phosphatases in mouse oocytes undergoing meiotic maturation and after parthenogenetic activation of mature oocytes arrested in metaphase II. Significant changes in the activity of type 2A protein phosphatases were observed during the first meiotic and the first mitotic cell cycles. These alterations in type 2A protein phosphatase activity occurred in the absence of changes in the quantity of the catalytic sub-unit and can be correlated with changes in the activity of protein kinases and rearrangement of the cellular cytoskeleton. Our observations support a role for type 2A protein phosphatases in cell cycle regulation and demonstrate that, like the protein kinases, the type 2A phosphatases also undergo changes in their activity during early mammalian development.  相似文献   

19.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are signal-transducing molecules that regulate the activities of a variety of proteins. In the present investigation, we have compared the effects of superoxide (O2-), nitric oxide (NO), and hydrogen peroxide (H2O2) on the activities of three highly homologous serine/threonine phosphatases, protein phosphatase type 1 (PP1), protein phosphatase type 2A (PP2A), and calcineurin (protein phosphatase type 2B). Although superoxide, generated from xanthine/xanthine oxidase or paraquat, and NO, generated from (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide or sodium nitroprusside, potently inhibited the phosphatase activity of calcineurin in neuroblastoma cell lysates, they had relatively little effect on the activities of PP1 or PP2A. In contrast, H2O2 inhibited the activities of all three phosphatases in lysates but was not a potent inhibitor for any of the enzymes. Calcineurin inactivated by O2-, NO, and H2O2 could be partially reactivated by the reducing agent ascorbate or by the thiol-specific reagent dithiothreitol (DTT). Maximal reactivation was achieved by the addition of both reagents, which suggests that ROS and RNS inhibit calcineurin by oxidizing both a catalytic metal(s) and a critical thiol(s). Reactivation of H2O2-treated PP1 also required the combination of both ascorbate and DTT, whereas PP2A required only DTT for reactivation. These results suggest that, despite their highly homologous structures, calcineurin is the only major Ser/Thr phosphatase that is a sensitive target for inhibition by superoxide and nitric oxide and that none of the phosphatases are sensitive to inhibition by hydrogen peroxide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号