首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
All eukaryotes use multiple controls to restrict DNA replication to once per cell cycle. Nevertheless, inactivation of a single gene, cul-4, causes massive re-replication in Caenorhabditis elegans. A novel study explains this dramatic phenotype by demonstrating that the CUL-4 E3 ligase simultaneously controls two critical licensing factors: CDT-1 and CDC-6.  相似文献   

5.
6.
7.
D Needham 《CMAJ》1997,156(8):1179-1180
  相似文献   

8.
Recent evidence demonstrates that plants are able not only to perceive and adaptively respond to external information but also to anticipate forthcoming hazards and stresses. Here, we tested the hypothesis that unstressed plants are able to respond to stress cues emitted from their abiotically-stressed neighbors and in turn induce stress responses in additional unstressed plants located further away from the stressed plants. Pisum sativum plants were subjected to drought while neighboring rows of five unstressed plants on both sides, with which they could exchange different cue combinations. On one side, the stressed plant and its unstressed neighbors did not share their rooting volumes (UNSHARED) and thus were limited to shoot communication. On its other side, the stressed plant shared one of its rooting volumes with its nearest unstressed neighbor and all plants shared their rooting volumes with their immediate neighbors (SHARED), allowing both root and shoot communication. Fifteen minutes following drought induction, significant stomatal closure was observed in both the stressed plants and their nearest unstressed SHARED neighbors, and within one hour, all SHARED neighbors closed their stomata. Stomatal closure was not observed in the UNSHARED neighbors. The results demonstrate that unstressed plants are able to perceive and respond to stress cues emitted by the roots of their drought-stressed neighbors and, via 'relay cuing', elicit stress responses in further unstressed plants. Further work is underway to study the underlying mechanisms of this new mode of plant communication and its possible adaptive implications for the anticipation of forthcoming abiotic stresses by plants.  相似文献   

9.
10.
Neuroligin and neurexin form an intercellular adhesion complex sufficient to trigger formation of functional presynaptic elements in vitro. This single molecular interaction appears to initiate clustering of synaptic vesicles, assembly of vesicle-release machinery and morphological changes at the presynaptic membrane.  相似文献   

11.
12.
In unicellular and multicellular organisms, cell polarity is essential for a wide range of biological processes. An important feature of cell polarity is the asymmetric distribution of proteins in or at the plasma membrane. In plants such polar localized proteins play various specific roles ranging from organizing cell morphogenesis, asymmetric cell division, pathogen defense, nutrient transport and establishment of hormone gradients for developmental patterning. Moreover, flexible respecification of cell polarities enables plants to adjust their physiology and development to environmental changes. Having evolved multicellularity independently and lacking major cell polarity mechanisms of animal cells, plants came up with alternative solutions to generate and respecify cell polarity as well as to regulate polar domains at the plasma membrane.  相似文献   

13.
Briefly ...     
《CMAJ》2000,162(1):100
  相似文献   

14.
Briefly...     
Donalee Moulton 《CMAJ》2000,162(5):689
  相似文献   

15.
Moving on ...     
  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号