首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nar operon, coding for the respiratory nitrate reductase of Thermus thermophilus (NRT), encodes a di-heme b-type (NarJ) and a di-heme c-type (NarC) cytochrome. The role of both cytochromes and that of a putative chaperone (NarJ) in the synthesis and maturation of NRT was studied. Mutants of T. thermophilus lacking either NarI or NarC synthesized a soluble form of NarG, suggesting that a putative NarCI complex constitutes the attachment site for the enzyme. Interestingly, the NarG protein synthesized by both mutants was inactive in nitrate reduction and misfolded, showing that membrane attachment was required for enzyme maturation. Consistent with its putative role as a specific chaperone, inactive and misfolded NarG was synthesized by narJ mutants, but in contrast to its Escherichia coli homologue, NarJ was also required for the attachment of the thermophilic enzyme to the membrane. A bacterial two-hybrid system was used to demonstrate the putative interactions between the NRT proteins suggested by the analysis of the mutants. Strong interactions were detected between NarC and NarI and between NarG and NarJ. Weaker interaction signals were detected between NarI, but not NarC, and both NarG and NarH. These results lead us to conclude that the NRT is a heterotetrameric (NarC/NarI/NarG/NarH) enzyme, and we propose a model for its synthesis and maturation that is distinct from that of E. coli. In the synthesis of NRT, a NarCI membrane complex and a soluble NarGJH complex are synthesized in a first step. In a second step, both complexes interact at the cytoplasmic face of the membrane, where the enzyme is subsequently activated with the concomitant conformational change and release of the NarJ chaperone from the mature enzyme.  相似文献   

2.
A glyoxylate reductase gene from the thermophilic bacterium Thermus thermophilus HB27 (TthGR) was cloned and expressed in Escherichia coli cells. The recombinant enzyme was highly purified to homogeneity and characterized. The purified TthGR showed thermostability up to 70 degrees C. In contrast, the maximum reaction condition was relatively mild (45 degrees C and pH 6.7). Although the kcat values against co-enzyme NADH and NADPH were similar, the Km value against co-enzyme NADH was approximately 18 times higher than that against NADPH. TthGR prefers NADPH rather than NADH as an electron donor. These results indicate that a phosphate group of a co-enzyme affects the binding affinity rather than the reaction efficiency, and TthGR demands appropriate amount of phosphate for a high activity. Furthermore, it was found that the half-lives of TthGR in the presence of 25% dimethyl sulfoxide and diethylene glycol were significantly longer than that in the absence of an organic solvent.  相似文献   

3.
In agreement with its distinct phylogenetic origin, the envelope of Thermus thermophilus consists of a complex pattern of layers with properties intermediate between those of Gram positives and Proteobacteria. Its cell wall of Gram positive composition is surrounded by an outer envelope that includes a crystalline layer scaffold built up by the SlpA protein, lipids and polysaccharides. The synthesis of this outer envelope has been studied by confocal microscopy. Available amino groups from the cell surface, mainly belonging to the SlpA protein, were covalently labelled in vivo with fluorescent dyes. Stained cells were able to grow without any apparent loss of viability, allowing the localization of the regions of new synthesis as dark nonfluorescent spots. Our results demonstrate that the outer envelope of T. thermophilus is synthesized from a central point in the cells, likely following a helical pattern. Cell poles and subpolar regions are basically inert and retain their label for generations.  相似文献   

4.

Background

Methylenetetrahydrofolate reductase (MTHFR) is one of the enzymes involved in homocysteine metabolism. Despite considerable genetic and clinical attention, the reaction mechanism and regulation of this enzyme are not fully understood because of difficult production and poor stability. While recombinant enzymes from thermophilic organisms are often stable and easy to prepare, properties of thermostable MTHFRs have not yet been reported.

Methodology/Principal Findings

MTHFR from Thermus thermophilus HB8, a homologue of Escherichia coli MetF, has been expressed in E. coli and purified. The purified MTHFR was chiefly obtained as a heterodimer of apo- and holo-subunits, that is, one flavin adenine dinucleotide (FAD) prosthetic group bound per dimer. The crystal structure of the holo-subunit was quite similar to the β8α8 barrel of E. coli MTHFR, while that of the apo-subunit was a previously unobserved closed form. In addition, the intersubunit interface of the dimer in the crystals was different from any of the subunit interfaces of the tetramer of E. coli MTHFR. Free FAD could be incorporated into the apo-subunit of the purified Thermus enzyme after purification, forming a homodimer of holo-subunits. Comparison of the crystal structures of the heterodimer and the homodimer revealed different intersubunit interfaces, indicating a large conformational change upon FAD binding. Most of the biochemical properties of the heterodimer and the homodimer were the same, except that the homodimer showed ≈50% activity per FAD-bound subunit in folate-dependent reactions.

Conclusions/Significance

The different intersubunit interfaces and rearrangement of subunits of Thermus MTHFR may be related to human enzyme properties, such as the allosteric regulation by S-adenosylmethionine and the enhanced instability of the Ala222Val mutant upon loss of FAD. Whereas E. coli MTHFR was the only structural model for human MTHFR to date, our findings suggest that Thermus MTHFR will be another useful model for this important enzyme.  相似文献   

5.
6.
The pgr1 mutant of Arabidopsis thaliana carries a single point mutation (P194L) in the Rieske subunit of the cytochrome b6/f (cyt b6/f) complex and is characterised by a reduced electron transport activity at saturating light intensities in vivo. We have investigated the electron transport in this mutant under in vitro conditions. Measurements of P700 reduction kinetics and of photosynthetic electron transport rates indicated that electron transfer from cyt b6/f to photosystem I is not generally reduced in the mutant, but that the pH dependence of this reaction is altered. The data imply that the pH-dependent inactivation of electron transport through cyt b6/f is shifted by about 1 pH unit to more alkaline pH values in pgr1 thylakoids in comparison with wild-type thylakoids. This interpretation was confirmed by determination of the transmembrane deltapH at different stromal pH values showing that the lumen pH in pgr1 mutant plants cannot drop below pH 6 reflecting most likely a shift of the pK and/or the redox potential of the oxidised Rieske protein.  相似文献   

7.
Enzymes serving as respiratory complex II belong to the succinate:quinone oxidoreductases superfamily that comprises succinate:quinone reductases (SQRs) and quinol:fumarate reductases. The SQR from the extreme thermophile Thermus thermophilus has been isolated, identified and purified to homogeneity. It consists of four polypeptides with apparent molecular masses of 64, 27, 14 and 15kDa, corresponding to SdhA (flavoprotein), SdhB (iron-sulfur protein), SdhC and SdhD (membrane anchor proteins), respectively. The existence of [2Fe-2S], [4Fe-4S] and [3Fe-4S] iron-sulfur clusters within the purified protein was confirmed by electron paramagnetic resonance spectroscopy which also revealed a previously unnoticed influence of the substrate on the signal corresponding to the [2Fe-2S] cluster. The enzyme contains two heme b cofactors of reduction midpoint potentials of -20mV and -160mV for b(H) and b(L), respectively. Circular dichroism and blue-native polyacrylamide gel electrophoresis revealed that the enzyme forms a trimer with a predominantly helical fold. The optimum temperature for succinate dehydrogenase activity is 70°C, which is in agreement with the optimum growth temperature of T. thermophilus. Inhibition studies confirmed sensitivity of the enzyme to the classical inhibitors of the active site, as there are sodium malonate, sodium diethyl oxaloacetate and 3-nitropropionic acid. Activity measurements in the presence of the semiquinone analog, nonyl-4-hydroxyquinoline-N-oxide (NQNO) showed that the membrane part of the enzyme is functionally connected to the active site. Steady-state kinetic measurements showed that the enzyme displays standard Michaelis-Menten kinetics at a low temperature (30°C) with a K(M) for succinate of 0.21mM but exhibits deviation from it at a higher temperature (70°C). This is the first example of complex II with such a kinetic behavior suggesting positive cooperativity with k' of 0.39mM and Hill coefficient of 2.105. While the crystal structures of several SQORs are already available, no crystal structure of type A SQOR has been elucidated to date. Here we present for the first time a detailed biophysical and biochemical study of type A SQOR-a significant step towards understanding its structure-function relationship.  相似文献   

8.
Cells extracts from Thermus thermophilus HB27 express phosphorolytic activities on purines and pyrimidine nucleosides. Five putative encoding genes were cloned and expressed in Escherichia coli, and the corresponding recombinant proteins were purified and studied. Two of these showed phosphorolytic activities against purine nucleosides, and third one showed phosphorolytic activity against pyrimidine nucleosides in vitro, and the three were named TtPNPI, TtPNPII, and TtPyNP, respectively. The optimal temperature for the activity of the three enzymes was beyond the water boiling point and could not be measured accurately, whereas all of them exhibited a wide plateau of optimal pHs that ranged from 5.0 to 7.0. Analytical ultracentrifugation experiments revealed that TtPNPI was a homohexamer, TtPNPII was a monomer, and TtPyNP was a homodimer. Kinetic constants were determined for the phosphorolysis of the natural substrates of each enzyme. Reaction tests with nucleoside analogues revealed critical positions in the nucleoside for its recognition. Activities with synthetic nucleobase analogues, such as 5-iodouracil or 2,6-diaminopurine, and arabinosides were detected, supporting that these enzymes could be applied for the synthesis of new nucleoside analogs with pharmacological activities.  相似文献   

9.
A plasmid vector for an extreme thermophile, Thermus thermophilus   总被引:7,自引:0,他引:7  
The host-vector system for an extreme thermophile, Thermus thermophilus HB27, was developed. The host strain has a mutation in tryptophan synthetase gene (trpB), and the mutation was determined to be a missense mutation by DNA sequence analysis. A Thermus-E. coli shuttle vector pYK109 was constructed. pYK109 consists of Thermus cryptic plasmid pTT8, tryptophan synthetase gene (trpB) of Thermus T2 and E. coli plasmid vector pUC13. pYK109 transformed T. thermophilus HB27 trpB5 to Trp+ at a frequency of 10(6) transformants per microgram DNA.  相似文献   

10.
We conducted a chromosome walk to obtain a DNA fragment downstream of lysJ and found an argE homolog in a putative operon composed of lysJ-orfC-orfD-argE homologs. A knockout mutant of the argE homolog showed significantly slow growth on a minimal medium, and the growth was markedly improved by addition of lysine. We therefore termed this gene lysK. Purified LysK protein has deacetylating activities for both N(2)-acetyllysine and N(2)-acetylornithine at almost equal efficiency. These results suggest that lysK which may share an ancestor with argE functions not only for the lysine biosynthesis, but also for arginine biosynthesis in Thermus thermophilus.  相似文献   

11.
Phytoene synthase encoded by the crtB gene is one of the rate-limiting enzymes for carotenoid production in Thermus thermophilus. We introduced a multicopy recombinant plasmid, pCOP1, in which the Thermus crtB gene was cloned, into carotenoid overproducing mutants of T. thermophilus. The overproducing mutants carrying a pCOP1 produced about twenty times as much carotenoids as the parental strain did.  相似文献   

12.
Recombination-deficient strains of the extreme thermophile Thermus thermophilus have been prepared from a leucine-isoleucine mutant strain (NM6). The availability of such recombination-deficient thermophilic bacterial strains may provide especially good hosts for work with plasmid vectors.  相似文献   

13.
An efficient procedure was established to select for thermostable proteases in an extreme thermophile, Thermus thermophilus. A non-protease-secreting mutant derived from T. thermophilus TH125 was used as host and the expression plasmid for aqualysin I from T. aquaticus YT-1 was constructed as a source of thermostable protease. T. thermophilus cells harboring the recombinant plasmid produced active aqualysin I into the medium and were able to grow on a minimal medium containing milk casein as the sole source of carbon and nitrogen.  相似文献   

14.
Previous studies from this laboratory established that the rapid but partial interconversion of tetrahydrofolate cofactors to dihydrofolate after exposure of L1210 leukemia cells to antifolates cannot be due to direct feedback inhibition of thymidylate synthase by dihydrofolate or any other endogenous folylpolyglutamates when dihydrofolate reductase activity is abolished by antifolates. Rather, the data suggested this preservation of tetrahydrofolate cofactor pools is likely due to a fraction of cellular folates unavailable for oxidation to dihydrofolate. This paper explores the role of cell cycle phase in L1210 leukemia cells in logarithmic versus stationary phase growth as a factor in the rate and extent of tetrahydrofolate cofactor interconversion to dihydrofolate after exposure of cells to the dihydrofolate reductase inhibitor trimetrexate. The S phase fraction was reduced by inoculating L1210 leukemia cells at high density to achieve a stationary state. Flow cytometric analysis of DNA content indicated that log phase cultures were 53.0% S phase; this decreased to 42.1% at 24 h and 24.1% at 48 h in stationary phase cultures. 5-Bromo-2'-deoxyuridine incorporation into DNA decreased 80 and 96%, while [3H]dUrd incorporation into DNA declined 70 and 95% for stationary cultures at 24 and 48 h, respectively, as compared with the log phase rates. Log phase cells interconverted 28.0% of the total pool of radiolabeled folates to dihydrofolate with a half-time of approximately 30 s. Stationary cells at 24 h interconverted 20.4% of the total folate pool with a t1/2 of approximately 3 min, and at 48 h, net interconversion to dihydrofolate decreased further to 12.1% with a t1/2 of approximately 6 min. The decrease in the extent of tetrahydrofolate cofactor interconversion to dihydrofolate in stationary phase cells was directly proportional to the decrease in the S phase fraction determined by total DNA content. This suggests that tetrahydrofolate cofactor depletion occurs only in S phase cells. The much larger drop in [3H]dUrd and 5-bromo-2'-deoxyuridine incorporation into DNA in comparison with the decline in the S phase fraction measured by DNA content along with the reduced rate of tetrahydrofolate cofactor interconversion to dihydrofolate indicates that the rate of DNA synthesis is decreased in S phase cells in stationary cultures. Network thermodynamic simulations suggest that a reduction in the number of S phase cells and their thymidylate synthase catalytic activity would account for the observed decrease in the rate and extent of interconversion of tetrahydrofolate cofactors to dihydrofolate after trimetrexate in stationary phase cultures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
A cell extract of an extremely thermophilic bacterium, Thermus thermophilus HB8, cultured in a synthetic medium catalyzed cystathionine gamma-synthesis with O-acetyl-L-homoserine and L-cysteine as substrates but not beta-synthesis with DL-homocysteine and L-serine (or O-acetyl-L-serine). The amounts of synthesized enzymes metabolizing sulfur-containing amino acids were estimated by determining their catalytic activities in cell extracts. The syntheses of cystathionine beta-lyase (EC 4.4.1.8) and O-acetyl-L-serine sulfhydrylase (EC 4.2.99.8) were markedly repressed by L-methionine supplemented to the medium. L-Cysteine and glutathione, both at 0.5 mM, added to the medium as the sole sulfur source repressed the synthesis of O-acetylserine sulfhydrylase by 55 and 73%, respectively, confirming that this enzyme functions as a cysteine synthase. Methionine employed at 1 to 5 mM in the same way derepressed the synthesis of O-acetylserine sulfhydrylase 2.1- to 2.5-fold. A method for assaying a low concentration of sulfide (0.01 to 0.05 mM) liberated from homocysteine by determining cysteine synthesized with it in the presence of excess amounts of O-acetylserine and a purified preparation of the sulfhydrylase was established. The extract of cells catalyzed the homocysteine gamma-lyase reaction, with a specific activity of 5 to 7 nmol/min/mg of protein, but not the methionine gamma-lyase reaction. These results suggested that cysteine was also synthesized under the conditions employed by the catalysis of O-acetylserine sulfhydrylase using sulfur of homocysteine derived from methionine. Methionine inhibited O-acetylserine sulfhydrylase markedly. The effects of sulfur sources added to the medium on the synthesis of O-acetylhomoserine sulfhydrylase and the inhibition of the enzyme activity by methionine were mostly understood by assuming that the organism has two proteins having O-acetylhomoserine sulfhydrylase activity, one of which is cystathionine gamma-synthase. Although it has been reported that homocysteine is directly synthesized in T. thermophilus HB27 by the catalysis of O-acetylhomoserine sulfhydrylase on the basis of genetic studies (T. Kosuge, D. Gao, and T. Hoshino, J. Biosci. Bioeng. 90:271-279, 2000), the results obtained in this study for the behaviors of related enzymes indicate that sulfur is first incorporated into cysteine and then transferred to homocysteine via cystathionine in T. thermophilus HB8.  相似文献   

16.
T Yagi  K Hon-nami  T Ohnishi 《Biochemistry》1988,27(6):2008-2013
Two types of the NADH-quinone reductase were isolated from Thermus thermophilus HB-8 membranes, by use of the nonionic detergent, dodecyl beta-maltoside, and NAD-agarose affinity, DEAE-cellulose, hydroxyapatite, and Superose 6 column chromatography. One of these (NADH dehydrogenase 1) is a complex composed of 10 unlike polypeptides, and the other (NADH dehydrogenase 2) exhibits a single band (Mr 53,000) upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The NADH-ubiquinone-1 reductase activity of the isolated NADH dehydrogenase 1 was about 14 times higher than that of the dodecyl beta-maltoside extract and partially rotenone sensitive. The NADH-ubiquinone-1 reductase activity of the isolated NADH dehydrogenase 2 was about 30-fold as high as that of the dodecyl beta-maltoside extract and rotenone insensitive. The purified NADH dehydrogenase 1 contained noncovalently bound FMN, non-heme iron, and acid-labile sulfide. The ratio of FMN to non-heme iron to acid-labile sulfide was 1:11-12:7-9. The high content of iron and labile sulfide is suggestive of the presence of several iron-sulfur clusters. The purified NADH dehydrogenase 2 contained noncovalently bound FAD and no non-heme iron or acid-labile sulfide. The activities of both NADH dehydrogenases were stable at temperatures of greater than or equal to 80 degrees C. The occurrence of two distinct types of NADH dehydrogenase as a common feature in the membranes of various aerobic bacteria is discussed.  相似文献   

17.
《BBA》2019,1860(11):148080
The crystal structure of the enzyme previously characterized as a type-2 NADH:menaquinone oxidoreductase (NDH-2) from Thermus thermophilus has been solved at a resolution of 2.9 Å and revealed that this protein is, in fact, a coenzyme A-disulfide reductase (CoADR). Coenzyme A (CoASH) replaces glutathione as the major low molecular weight thiol in Thermus thermophilus and is maintained in the reduced state by this enzyme (CoADR). Although the enzyme does exhibit NADH:menadione oxidoreductase activity expected for NDH-2 enzymes, the specific activity with CoAD as an electron acceptor is about 5-fold higher than with menadione. Furthermore, the crystal structure contains coenzyme A covalently linked Cys44, a catalytic intermediate (Cys44-S-S-CoA) reduced by NADH via the FAD cofactor. Soaking the crystals with menadione shows that menadione can bind to a site near the redox active FAD, consistent with the observed NADH:menadione oxidoreductase activity. CoADRs from other species were also examined and shown to have measurable NADH:menadione oxidoreductase activity. Although a common feature of this family of enzymes, no biological relevance is proposed. The CoADR from T. thermophilus is a soluble homodimeric enzyme. Expression of the recombinant TtCoADR at high levels in E. coli results in a small fraction that co-purifies with the membrane fraction, which was used previously to isolate the enzyme wrongly identified as a membrane-bound NDH-2. It is concluded that T. thermophilus does not contain an authentic NDH-2 component in its aerobic respiratory chain.  相似文献   

18.
Using site-specific mutagenesis, we have constructed two mutants of Escherichia coli dihydrofolate reductase (ecDHFR) to investigate further the function of a weakly acidic side chain at position 27 in substrate protonation: Asp27-->Glu (D27E) and Asp27-->Cys (D27C). The crystal structure of D27E ecDHFR in a binary complex with methotrexate shows that the side-chain oxygen atoms of Glu27 are in almost precisely the same location as those of Asp27 in the wild-type enzyme. Kinetic evidence indicates that Glu27 can indeed function efficiently in the proton relay to dihydrofolate. Even though vertebrate DHFRs all have a glutamic acid at the structurally equivalent position, the kinetic properties of Glu27 ecDHFR more closely resemble those of wild-type bacterial DHFRs than of vertebrate DHFRs. The D27C mutation produced an enzyme still capable of relaying a proton to dihydrofolate, but with the intrinsic pKa in its pH-activity profiles shifted upward to values characteristic of the more basic thiolate group. The crystal structure of the binary complex with methotrexate reveals two unexpected features: (1) the Cys27 sulfhydryl group does not point toward the pteridine-binding site, but the side chain of this residue is instead rotated 120 degrees to interact with a tyrosine side chain projecting from a neighboring beta-strand; (2) a bound ethanol molecule occupies a cavity adjacent to methotrexate. Ethanol is a component of the crystallization medium.  相似文献   

19.
We developed a method to determine dihydrofolate reductase (DHFR) activity at pH 7.4 (37 degrees C) by monitoring its product, tetrahydrofolate (H(4)folate), using HPLC with electrochemical detection. After the assay mixture was deproteinized by 0.5 M perchloric acid, the H(4)folate concentration was measured. Using sodium ascorbate at 20 mM, H(4)folate was stable in our assay system. The enzyme activity was also stable. The detection limit of this method was less than 1 nM of H(4)folate in the enzyme assay system, which was 1/100 lower than those for the NADPH-spectrophotometric assay, which is commonly used for analysis of DHFR activity. This value of 1 nM allowed us to control the conversion from dihydrofolate (H(2)folate) to H(4)folate less than 10% of initial substrate concentrations during assay, when we used a concentration around K(m) values reported for DHFR from various sources. The rate of reduction showed a linearity at concentrations around the K(m). The reduction rate must be evaluated exactly around the K(m), in order to obtain an accurate profile of Michaelis-Menten kinetics. This assay method has a sensitivity high enough to determine the reduction rate at H(2)folate concentrations around K(m). In addition, the assay procedure is very simple. Therefore, our method may be useful for studying DHFR.  相似文献   

20.
The leuB gene codes for 3-isopropylmalate dehydrogenase of the leucine biosynthetic pathway in an extreme thermophile, Thermus thermophilus. The leuB gene of the thermophile was replaced with a temperature-sensitive chimeric leuB gene. The resultant transformant was adapted to high temperature, a thermostable mutant strain being obtained. A single base substitution that replaces isoleucine at 93 with leucine was found in the chimeric leuB gene of the thermostable mutant. The resultant amino acid residue coincided with the corresponding residue of the T. thermophilus enzyme. It was confirmed that the mutant enzyme is more stable than the original chimeric enzyme. This system can be used to produce stabilized mutants of other enzymes without structural knowledge of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号