首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The aim of this study was to examine the effects of muscle fibre composition on muscle sympathetic nerve activity (MSNA) in response to isometric exercise. The MSNA, recorded from the tibial nerve by a microneurographic technique during contraction and following arterial occlusion, was compared in three different muscle groups: the forearm (handgrip), anterior tibialis (foot dorsal contraction), and soleus muscles (foot plantar contraction) contracted separately at intensities of 20%, 33% and 50% of the maximal voluntary force. The increases in MSNA relative to control levels during contraction and occlusion were significant at all contracting forces for handgrip and at 33% and 50% of maximal for dorsal contraction, but there were no significant changes, except during exercise at 50%, for plantar contraction. The size of the MSNA response correlated with the contraction force in all muscle groups. Pooling data for all contraction forces, there were different MSNA responses among muscle groups in contraction forces (P = 0.0001, two-way analysis of variance), and occlusion periods (P = 0.0001). The MSNA increases were in the following order of magnitude: handgrip, dorsal, and plantar contractions. The order of the fibre type composition in these three muscles is from equal numbers of types I and II fibres in the forearm to increasing number of type I fibres in the leg muscles. The different MSNA responses to the contraction of different muscle groups observed may have been due in part to muscle metaboreflex intensity influenced by their metabolic capacity which is related to by their metabolic capacity which is related to the fibre type.  相似文献   

2.
Based on animal studies, it has been speculated that muscle metabolites sensitize muscle mechanoreceptors and increase mechanoreceptor-mediated muscle sympathetic nerve activity (MSNA). However, this hypothesis has not been directly tested in humans. In this study, we tested the hypothesis that in healthy individuals passive stretch of forearm muscles would evoke significant increases in mean MSNA when muscle metabolite concentrations were increased. In 12 young healthy subjects, MSNA, ECG, and blood pressure were recorded. Subjects performed static fatiguing isometric handgrip at 30% maximum voluntary contraction followed by 4 min of postexercise muscle ischemia (PEMI). After 2 min of PEMI, wrist extension (i.e., wrist dorsiflexion) was performed. The static stretch protocol was also performed during 1) a freely perfused condition, 2) ischemia alone, and 3) PEMI after nonfatiguing exercise. Finally, repetitive short bouts of wrist extension were also performed under freely perfused conditions. This last paradigm evoked transient increases in MSNA but had no significant effect on mean MSNA over the whole protocol. During the PEMI after fatiguing handgrip, static stretch induced significant increases in MSNA (552 +/- 74 to 673 +/- 90 U/min, P < 0.01) and mean blood pressure (102 +/- 2 to 106 +/- 2 mmHg, P < 0.001). Static stretch performed under the other three conditions had no significant effects on mean MSNA and blood pressure. The present data verified that in healthy humans mechanoreceptor(s) stimulation evokes significant increases in mean MSNA and blood pressure when muscle metabolite concentrations are increased above a certain threshold.  相似文献   

3.
We investigated the time-dependent modulation of arterial baroreflex (ABR) control of muscle sympathetic nerve activity (MSNA) that occurs during isometric handgrip exercise (IHG). Thirteen healthy subjects performed a 3-min IHG at 30% maximal voluntary contraction, which was followed by a period of imposed postexercise muscle ischemia (PEMI). The ABR control of MSNA (burst incidence and strength and total activity) was evaluated by analyzing the relationship between spontaneous variations in diastolic arterial pressure (DAP) and MSNA during supine rest, at each minute of IHG, and during PEMI. We found that 1) the linear relations between DAP and MSNA variables were shifted progressively rightward until the third minute of IHG (IHG3); 2) 2 min into IHG (IHG2), the DAP-MSNA relations were shifted upward and were shifted further upward at IHG3; 3) the sensitivity of the ABR control of total MSNA was increased at IHG2 and increased further at IHG3; and 4) during PEMI, the ABR operating pressure was slightly higher than at IHG2, and the sensitivity of the control of total MSNA was the same as at IHG2. During PEMI, the DAP-burst strength and DAP-total MSNA relations were shifted downward from the IHG3 level to the IHG2 level, whereas the DAP-burst incidence relation remained at the IHG3 level. These results indicate that during IHG, ABR control of MSNA is modulated in a time-dependent manner. We suggest that this modulation of ABR function is one of the mechanisms underlying the progressive increase in blood pressure and MSNA during the course of isometric exercise.  相似文献   

4.
We aimed to investigate the interaction [with respect to the regulation of muscle sympathetic nerve activity (MSNA) and blood pressure] between the arterial baroreflex and muscle metaboreflex in humans. In 10 healthy subjects who performed a 1-min sustained handgrip exercise at 50% maximal voluntary contraction followed by forearm occlusion, arterial baroreflex control of MSNA (burst incidence and strength and total activity) was evaluated by analyzing the relationship between beat-by-beat spontaneous variations in diastolic arterial blood pressure (DAP) and MSNA both during supine rest (control) and during postexercise muscle ischemia (PEMI). During PEMI (vs. control), 1) the linear relationship between burst incidence and DAP was shifted rightward with no alteration in sensitivity, 2) the linear relationship between burst strength and DAP was shifted rightward and upward with no change in sensitivity, and 3) the linear relationship between total activity and DAP was shifted to a higher blood pressure and its sensitivity was increased. The modification of the control of total activity that occurs in PEMI could be a consequence of alterations in the baroreflex control of both MSNA burst incidence and burst strength. These results suggest that the arterial baroreflex and muscle metaboreflex interact to control both the occurrence and strength of MSNA bursts.  相似文献   

5.
There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.  相似文献   

6.
Sympathetic neural discharge and vascular resistance during exercise in humans   总被引:10,自引:0,他引:10  
The purpose of this study was to determine the relationship between changes in efferent muscle sympathetic nerve activity (MSNA) to the lower leg and calf vascular resistance (CVR) during isometric exercise in humans. We made intraneural (microneurographic) determinations of MSNA in the right leg (peroneal nerve) while simultaneously measuring calf blood flow to the left leg, arterial pressure, and heart rate in 10 subjects before (control), during, and after (recovery) isometric handgrip exercise performed for 2.5 min at 15, 25, and 35% of maximal voluntary contraction (MVC). Heart rate and arterial pressure increased above control within the initial 30 s of handgrip at all levels, and the magnitudes of the increases at end contraction were proportional to the intensity of the exercise. In general, neither MSNA nor CVR increased significantly above control levels during handgrip at 15% MVC. Similarly, neither variable increased above control during the initial 30 s of handgrip at 25 and 35% MVC; however, during the remainder of the contraction period, progressive, parallel increases were observed in MSNA and CVR (P less than 0.05). The correlation coefficients relating changes in MSNA to changes in CVR for the individual subjects averaged 0.63 +/- 0.07 (SE) (range 0.30-0.91) and 0.94 +/- 0.06 (range 0.80-0.99) for the 25 and 35% MVC levels, respectively. During recovery, both MSNA and CVR returned rapidly toward control levels. These findings demonstrate that muscle sympathetic nerve discharge and vascular resistance in the lower leg are tightly coupled during and after isometric arm exercise in humans. Furthermore, the exercise-induced adjustments in the two variables are both contraction intensity and time dependent.  相似文献   

7.
The purpose of this study was to test the hypothesis that efferent sympathetic neural discharge is coupled with the development of muscle fatigue during voluntary exercise in humans. In 12 healthy subjects (aged 20-34 yr) we measured heart rate (HR), arterial blood pressure (AP), and noncontracting, skeletal muscle sympathetic nerve activity (MSNA) in the leg (peroneal nerve) before (control) and during each of three trials of submaximal (30% of maximum) isometric handgrip exercise performed to exhaustion. In six of the subjects of eletromyographic (EMG) activity of the exercising forearm was also measured. HR and AP increased significantly (P less than 0.05) in the 1st min of exercise in all trials. In contrast, neither MSNA nor EMG activity increased significantly above control during the 1st min of exercise, but both parameters subsequently increased in a progressive and parallel manner (P less than 0.05). The overall correlation coefficient between MSNA and EMG activity (144 observations) was 0.85 (P less than 0.001). With successive trials the magnitudes of the increases in HR, AP, MSNA, and EMG activity were greater at any absolute point in time during exercise. These results indicate that sympathetic activation to noncontracting skeletal muscle is directly related to the development of muscle fatigue (as assessed by the change in EMG) during prolonged isometric exercise in humans. Furthermore, our findings demonstrate that previous fatiguing contractions alter the time course of the sympathetic neural adjustments to exercise.  相似文献   

8.
Peak oxygen uptake (VO(2 peak)) in patients with heart failure (HF) is inversely related to muscle sympathetic nerve activity (MSNA) at rest. We hypothesized that the MSNA response to handgrip exercise is augmented in HF patients and is greatest in those with low VO(2 peak). We studied 14 HF patients and 10 age-matched normal subjects during isometric [30% of maximal voluntary contraction (MVC)] and isotonic (10%, 30%, and 50% MVC) handgrip exercise that was followed by 2 min of posthandgrip ischemia (PHGI). MSNA was significantly increased during exercise in HF but not normal subjects. Both MSNA and HF levels remained significantly elevated during PHGI after 30% isometric and 50% isotonic handgrip in HF but not normal subjects. HF patients with lower VO(2 peak) (<56% predicted; n = 8) had significantly higher MSNA during rest and exercise than patients with VO(2 peak) > 56% predicted (n = 6) and normal subjects. The muscle metaboreflex contributes to the greater reflex increase in MSNA during ischemic or intense nonischemic exercise in HF. This occurs at a lower threshold than normal and is a function of VO(2 peak).  相似文献   

9.
The primary purpose of this study was to determine whether the sympathetic neural activation induced by isometric exercise is influenced by the size of the contracting muscle mass. To address this, in nine healthy subjects (aged 19-27 yr) we measured heart rate, systolic arterial blood pressure, and muscle sympathetic nerve activity in the leg (MSNA; peroneal nerve) before (control) and during 2.5 min of isometric handgrip exercise (30% of maximal voluntary force). Exercise was performed with the right and left arms separately and with both arms simultaneously (random order). During exercise, heart rate, systolic pressure, and MSNA increased above control under all conditions (P less than 0.05). For each variable, the magnitudes of the increases from control to the end of exercise were significantly greater when exercise was performed with two arms compared with either arm alone (P less than 0.05). In general, the increases in heart rate, systolic pressure, and MSNA elicited during two-arm exercise were significantly less than the simple sums of the responses evoked during exercise of each arm separately. These findings indicate that the magnitude of the sympathetic neural activation evoked during isometric exercise in humans is determined in part by the size of the active muscle mass. In addition, our results suggest that the sympathetic cardiovascular adjustments elicited during exercise of separate limbs are not simply additive but instead exhibit an inhibitory interaction (i.e., neural occlusion).  相似文献   

10.
Animal studies suggest that prostaglandins in skeletal muscles stimulate afferents and contribute to the exercise pressor reflex. However, human data regarding a role for prostaglandins in this reflex are varied, in part because of systemic effects of pharmacological agents used to block prostaglandin synthesis. We hypothesized that local blockade of prostaglandin synthesis in exercising muscles could attenuate muscle sympathetic nerve activity (MSNA) responses to fatiguing exercise. Blood pressure (Finapres), heart rate, and MSNA (microneurography) were assessed in 12 young healthy subjects during static handgrip and postexercise muscle ischemia (PEMI) before and after local infusion of 6 mg of ketorolac tromethamine in saline via Bier block (regional intravenous anesthesia). In the second experiment (n = 10), the same amount of saline was infused via the Bier block. Ketorolac Bier block decreased the prostaglandins synthesis to approximately 33% of the baseline. After ketorolac Bier block, the increases in MSNA from the baseline during the fatiguing handgrip was significantly lower than that before the Bier block (before ketorolac: Delta502 +/- 111; post ketorolac: Delta348 +/- 62%, P = 0.016). Moreover, the increase in total MSNA during PEMI after ketorolac was significantly lower than that before the Bier block (P = 0.014). Saline Bier block had no similar effect. The observations indicate that blockade of prostaglandin synthesis attenuates MSNA responses seen during fatiguing handgrip and suggest that prostaglandins contribute to the exercise pressor reflex.  相似文献   

11.
Studies of whole limb blood flow have shown that static handgrip elicits a vasodilatation in the resting forearm and vasoconstriction in the resting leg. We asked if these responses occur in the skeletal muscle vascular bed, and if so, what is the relative contribution of local metabolic versus other mechanisms to these vascular responses. Blood flow recordings were made simultaneously in the skeletal muscle of the resting arm and leg using the Xenon-washout method in ten subjects during 3 min of isometric handgrip at 30% of maximal voluntary contraction. In the arm, skeletal muscle vascular resistance (SMVR) decreased transiently at the onset of exercise followed by a return to baseline levels at the end of exercise. In the leg SMVR remained unchanged during the 1st min of handgrip, but had increased to exceed baseline levels by the end of exercise. During exercise electromyography (EMG) recordings from nonexercising limbs demonstrated a progressive 20-fold increase in activity in the arm, but remained at baseline in the leg. During EMG-signal modelled exercise performed to mimic the inadvertent muscle activity, decreases in forearm SMVR amounted to 57% of the decrease seen with controlateral handgrip. The present study would seem to indicate that vascular tone in nonexercising skeletal muscle in the arm and leg are controlled differently during the early stages of static handgrip. Metabolic vasodilatation due to involuntary contraction could significantly modulate forearm skeletal muscle vascular responses, but other factors, most likely neural vasodilator mechanisms, must make major contributions. During the later stages of contralateral sustained handgrip, vascular adjustments in resting forearm skeletal muscle would seem to be the final result of reflex sympathetic vasoconstrictor drive, local metabolic vasodilator forces and possibly neurogenic vasodilator mechanisms.  相似文献   

12.
The purpose of this study was to test the general hypothesis that sympathoinhibitory cardiopulmonary baroreflexes modulate sympathetic outflow during voluntary exercise in humans. Direct (microneurographic) measurements of postganglionic sympathetic nerve activity to noncontracting muscle (MSNA) were made from the right peroneal nerve in the leg, and arterial pressure (AP) and heart rate (HR) were recorded in 10 healthy subjects before (control) and for 2.5 min during each of five interventions: 1) lower-body negative pressure at -10 mmHg (LBNP) alone, 2 and 3) isometric handgrip exercise at 15 and 30% of maximal voluntary contraction (MVC) alone, and 4 and 5) handgrip at 15 and 30% MVC performed during LBNP. During LBNP alone, which should have reduced cardiopulmonary baroreflex sympathoinhibition, AP and HR did not change from control, but MSNA increased 93 +/- 24% (P less than 0.05). Handgrip elicited contraction intensity-dependent increases in AP and HR (P less than 0.05), but MSNA increased above control only at the 30% MVC level (165 +/- 30%, P less than 0.05). The HR, AP, and MSNA responses to either level of handgrip performed during LBNP were not different from the algebraic sums of the corresponding responses to handgrip and LBNP performed separately (P greater than 0.05). Since there was no facilitation of the MSNA response to handgrip when performed during LBNP compared with algebraic sums of the separate responses, our results do not support the hypothesis that cardiopulmonary baroreflexes modulate (inhibit) sympathetic outflow during exercise in humans.  相似文献   

13.
Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each exercise bout was followed by 2 min of postexercise muscle ischemia. The second exercise bouts were performed after 60 min of rest in which 11 subjects were given ketoprofen (300 mg) and 10 subjects received a placebo. Ketoprofen significantly lowered plasma thromboxane B(2) in the drug group (from 36 +/- 6 to 22 +/- 3 pg/ml, P < 0.04), whereas thromboxane B(2) in the placebo group increased from 40 +/- 5 to 61 +/- 9 pg/ml from trial 1 to trial 2 (P < 0.008). Ketoprofen and placebo did not change sympathetic and cardiovascular responses to dynamic handgrip, isometric handgrip, and postexercise muscle ischemia. There was no relationship between thromboxane B(2) concentrations and MSNA or arterial pressure responses during both exercise modes. The data indicate that physiological increases or decreases in prostaglandins do not alter exercise-induced increases in MSNA and arterial pressure in humans. These findings suggest that contraction-induced metabolites other than prostaglandins mediate MSNA responses to exercise in humans.  相似文献   

14.
To examine effects of static exercise on the arterial baroreflex control of vascular sympathetic nerve activity, 22 healthy male volunteers performed 2 min of static handgrip exercise at 30% of maximal voluntary force, followed by postexercise circulatory arrest (PE-CA). Microneurographic recording of muscle sympathetic nerve activity (MSNA) was made with simultaneous recording of arterial pressure (Portapres). The relationship between MSNA and diastolic arterial pressure was calculated for each condition and was defined as the arterial baroreflex function. There was a close relationship between MSNA and diastolic arterial pressure in each subject at rest and during static exercise and PE-CA. The slope of the relationship significantly increased by >300% during static exercise (P < 0.001), and the x-axis intercept (diastolic arterial pressure level) increased by 13 mmHg during exercise (P < 0.001). These alterations in the baroreflex relationship were completely maintained during PE-CA. It is concluded that static handgrip exercise is associated with a resetting of the operating range and an increase in the reflex gain of the arterial barorelex control of MSNA.  相似文献   

15.
Measurement of skin sympathetic nerve activity (SSNA) during isometric exercise has been previously limited to handgrip. We hypothesized that isometric leg exercise due to the greater muscle mass of the leg would elicit greater SSNA responses than arm exercise because of presumably greater central command and muscle mechanoreceptor activation. To compare the effect of isometric arm and leg exercise on SSNA and cutaneous end-organ responses, 10 subjects performed 2 min of isometric knee extension (IKE) and handgrip (IHG) at 30% of maximal voluntary contraction followed by 2 min of postexercise muscle ischemia (PEMI) in a normothermic environment. SSNA was recorded from the peroneal nerve. Cutaneous vascular conductance (laser-Doppler flux/mean arterial pressure) and electrodermal activity were measured within the field of cutaneous afferent discharge. Heart rate and mean arterial pressure significantly increased by 16 +/- 3 and 23 +/- 3 beats/min and by 22 +/- 2 and 27 +/- 3 mmHg from baseline during IHG and IKE, respectively. Heart rate and mean arterial pressure responses were significantly greater during IKE compared with IHG. SSNA increased significantly and comparably during IHG and IKE (52 +/- 20 and 50 +/- 13%, respectively). During PEMI, SSNA and heart rate returned to baseline, whereas mean arterial pressure remained significantly elevated (Delta12 +/- 2 and Delta13 +/- 2 mmHg from baseline for IHG and IKE, respectively). Neither cutaneous vascular conductance nor electrodermal activity was significantly altered by either exercise or PEMI. These results indicate that, despite cardiovascular differences in response to IHG and IKE, SSNA responses are similar at the same exercise intensity. Therefore, the findings suggest that relative effort and not muscle mass is the main determinant of exercise-induced SSNA responses in humans.  相似文献   

16.
Ray, Chester A., and Kathryn H. Gracey. Augmentation ofexercise-induced muscle sympathetic nerve activity during muscle heating. J. Appl. Physiol. 82(6):1719-1725, 1997.The muscle metabo- and mechanoreflexes have beenshown to increase muscle sympathetic nerve activity (MSNA) duringexercise. Group III and IV muscle afferents, which are believed tomediate this response, have been shown to be thermosensitive inanimals. The purpose of the present study was to evaluate the effect ofmuscle temperature on MSNA responses during exercise. Eleven subjectsperformed ischemic isometric handgrip at 30% of maximal voluntarycontraction to fatigue, followed by 2 min of postexercise muscleischemia (PEMI), with and without local heating of the forearm. Localheating of the forearm increased forearm muscle temperature from 34.4 ± 0.2 to 38.9 ± 0.3°C(P = 0.001). Diastolic andmean arterial pressures were augmented during exercise in the heat.MSNA responses were greater during ischemic handgrip with local heatingcompared with control (no heating) after the first 30 s. MSNA responsesat fatigue were greater during local heating. MSNA increased by 16 ± 2 and 20 ± 2 bursts per 30 s for control and heating,respectively (P = 0.03). Whenexpressed as a percent change in total activity (total burstamplitude), MSNA increased 531 ± 159 and 941 ± 237% forcontrol and heating, respectively (P = 0.001). However, MSNA was not different during PEMI between trials.This finding suggests that the augmentation of MSNA during exercisewith heat was due to the stimulation of mechanically sensitive muscleafferents. These results suggest that heat sensitizes skeletal muscleafferents during muscle contraction in humans and may play a role inthe regulation of MSNA during exercise.

  相似文献   

17.
To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 +/- 2 yr) during 3 min of three randomized interventions: isocapnic hypoxia (10% O(2)) (chemoreflex activation), isometric handgrip exercise in normoxia (metaboreflex activation), and isometric handgrip exercise during isocapnic hypoxia (concomitant metaboreflex and chemoreflex activation). Each intervention was followed by a forearm circulatory arrest to allow persistent metaboreflex activation in the absence of exercise and chemoreflex activation. Handgrip increased blood pressure, MSNA, heart rate, ventilation, and lactate (all P < 0.001). Hypoxia without handgrip increased MSNA, heart rate, and ventilation (all P < 0.001), but it did not change blood pressure and lactate. Handgrip enhanced blood pressure, heart rate, MSNA, and ventilation responses to hypoxia (all P < 0.05). During circulatory arrest after handgrip in hypoxia, heart rate returned promptly to baseline values, whereas ventilation decreased but remained elevated (P < 0.05). In contrast, MSNA, blood pressure, and lactate returned to baseline values during circulatory arrest after hypoxia without exercise but remained markedly increased after handgrip in hypoxia (P < 0.05). We conclude that metaboreceptors and chemoreceptors exert differential effects on the cardiorespiratory and sympathetic responses during exercise in hypoxia.  相似文献   

18.
Increases in the concentration of interstitial potassium concentration during exercise may play a role in the modulation of the cardiovascular response to exercise. However, it is not known if changes in potassium correlate with indexes of muscle reflex engagement. Eight healthy subjects performed dynamic [rhythmic handgrip (RHG)] and static handgrip (SHG) exercise at 40% of maximal voluntary contraction. Forearm circulatory arrest was performed to assess the metaboreceptor component of the exercise pressor reflex. Mean arterial pressure (MAP) and muscle sympathetic nerve activity (MSNA) were measured during each exercise paradigm. Venous plasma potassium concentrations ([K(+)](V)) were measured and used as a surrogate marker for interstitial potassium. [K(+)](V) were measured at baseline and at 1-min intervals during dynamic handgrip. During SHG, [K(+)](V) were measured at baseline, 30 and 90 s of exercise, and twice during forearm circulatory arrest. Mean [K(+)](V) was 3.6 mmol/l at rest before both paradigms. During RHG, [K(+)](V) rose by approximately 1.0 mmol/l by min 2 and remained constant throughout the rest of handgrip. During SHG, [K(+)](V) rose significantly at 30 s and rose an additional approximately 1.0 mmol/l by peak exercise. MAP and MSNA rose during both exercise paradigms. During posthandgrip circulatory arrest (PHG-CA), MSNA and blood pressure remained above baseline. [K(+)](V) and MSNA did not correlate during either exercise paradigm. Moreover, during PHG-CA, there was clear dissociation of MSNA from [K(+)](V). These data suggest that potassium does not play a direct role in the maintenance of the exercise pressor reflex.  相似文献   

19.
Peripheral chemoreflex inhibition with hyperoxia decreases sympathetic nerve traffic to muscle circulation [muscle sympathetic nerve activity (MSNA)]. Hyperoxia also decreases lactate production during exercise. However, hyperoxia markedly increases the activation of sensory endings in skeletal muscle in animal studies. We tested the hypothesis that hyperoxia increases the MSNA and mean blood pressure (MBP) responses to isometric exercise. The effects of breathing 21% and 100% oxygen at rest and during isometric handgrip at 30% of maximal voluntary contraction on MSNA, heart rate (HR), MBP, blood lactate (BL), and arterial O2 saturation (SaO2) were determined in 12 healthy men. The isometric handgrips were followed by 3 min of postexercise circulatory arrest (PE-CA) to allow metaboreflex activation in the absence of other reflex mechanisms. Hyperoxia lowered resting MSNA, HR, MBP, and BL but increased Sa(O2) compared with normoxia (all P < 0.05). MSNA and MBP increased more when exercise was performed in hyperoxia than in normoxia (MSNA: hyperoxic exercise, 255 +/- 100% vs. normoxic exercise, 211 +/- 80%, P = 0.04; and MBP: hyperoxic exercise, 33 +/- 9 mmHg vs. normoxic exercise, 26 +/- 10 mmHg, P = 0.03). During PE-CA, MSNA and MBP remained elevated (both P < 0.05) and to a larger extent during hyperoxia than normoxia (P < 0.05). Hyperoxia enhances the sympathetic and blood pressure (BP) reactivity to metaboreflex activation. This is due to an increase in metaboreflex sensitivity by hyperoxia that overrules the sympathoinhibitory and BP lowering effects of chemoreflex inhibition. This occurs despite a reduced lactic acid production.  相似文献   

20.
Continuous measurement of leg blood flow (LBF) using Doppler ultrasound with simultaneous noninvasive mean arterial blood pressure (MAP) measurement permits beat-to-beat estimates of leg vascular resistance (LVR) in humans. We tested the hypothesis that the beat-to-beat fluctuations in LVR and the dynamic relationship between MAP and LVR are modulated by the activation of muscle metaboreflex. Twelve healthy subjects performed a 1-min isometric handgrip exercise at 50% maximal voluntary contraction, which was followed by a period of imposed postexercise muscle ischemia (PEMI). We then employed transfer function analysis to examine the dynamic relationships between MAP and LBF and between MAP and LVR, both at rest (control) and during PEMI. We found the following. 1) The spectral power for LBF and LVR in low-frequency ( approximately 0.03-0.15 Hz) range significantly increased from control during PEMI without a significant change in the high-frequency ( approximately 0.15-0.35 Hz) power. 2) During PEMI, the transfer function gains for MAP-LBF and MAP-LVR relationships in the low-frequency ( approximately 0.05-0.15 Hz) range were significantly increased during PEMI (vs. control) but were unchanged in the high-frequency ( approximately 0.2-0.3 Hz) range. 3) The phases for MAP-LBF and MAP-LVR relationships were not different during control and PEMI. The phase for MAP-LVR relationship revealed that changes in MAP were followed by directionally similar changes in LVR, which is consistent with the characteristics of intrinsic vascular regulatory mechanisms such as the myogenic response of the resistance arteries. We suggest that, in humans, modulation of the dynamic MAP-LVR relationship during activation of the muscle metaboreflex reflects complex interactions between intrinsic vascular regulatory mechanisms and sympathetic vascular regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号