首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type-I diabetes is associated with a decrease in magnesium content in various tissues, including liver. We have reported that hepatocytes from streptozotocin-injected rats have lost the ability to accumulate Mg2+ following hormonal stimulation. To assess whether the defect is inherent to the Mg2+ transport mechanism located in the hepatocyte cell membrane, plasma membrane vesicles were purified from diabetic livers. Diabetic plasma membranes do not retain intravesicular Mg2+ as tightly as vesicles purified from livers of age-matched non-diabetic rats. In addition, the amount of intravesicular Mg2+ these vesicles exchange for extravesicular Na+ or Ca2+ is 2-3-fold larger than in non-diabetic vesicles. The partition of Ca2+/Mg2+ and Na+/Mg2+ exchange mechanisms in the apical and basolateral domains of liver plasma membrane is maintained under diabetic conditions, although the Na+/Mg2+ exchanger in diabetic basolateral membranes has lost the ability to operate in reverse and favor an accumulation of extravesicular Mg2+ within the vesicles in exchange for entrapped Na+. These data indicate the occurrence of a major alteration in Mg2+ transport across the hepatocyte membrane, which can explain, at least in part, the decrease in liver magnesium content observed in diabetic animals and patients.  相似文献   

2.
Alpha1- and beta-adrenoceptor stimulation elicits Mg2+ extrusion from liver cells in conjunction with hepatic glucose output (T. Fagan and A. Romani. Am J Physiol Gastrointest Liver Physiol 279: G943-G950, 2000.). To characterize the role of intrahepatic glucose on Mg2+ transport, male Sprague-Dawley rats were starved overnight before being anesthetized and used as organ donors. Perfused livers or collagenase-dispersed hepatocytes were stimulated by alpha1 (phenylephrine)- or beta (isoproterenol)-adrenergic agonists. Mg2+ extrusion was assessed by atomic absorbance spectrophotometry. In both experimental models, the administration of pharmacological doses of adrenergic agonists did not elicit Mg2+ extrusion. The determination of cellular Mg2+ indicated an approximately 9% decrease in total hepatic Mg2+ content in liver cells after overnight fasting, whereas the ATP level was unchanged. Hepatocytes from starved rats accumulated approximately four times more Mg2+ than liver cells from fed animals. This enlarged Mg2+ accumulation depended in part on extracellular glucose, since it was markedly reduced in the absence of extracellular glucose or in the presence of the glucose transport inhibitor phloretin. The residual Mg2+ accumulation observed in the absence of extracellular glucose was completely abolished by imipramine or removal of extracellular Na+. Taken together, these data indicate 1) that hepatic glucose mobilization is essential for Mg2+ extrusion by adrenergic agonist and 2) that starved hepatocytes accumulate Mg2+ via two distinct pathways, one of which is associated with glucose transport, whereas the second can be tentatively identified as an imipramine-inhibited Na+-dependent pathway.  相似文献   

3.
Serum and tissue Mg(2+) content are markedly decreased in diabetic patients and animals. At the tissue level, Mg(2+) loss progresses over time and affects predominantly heart, liver and skeletal muscles. In the present study, alterations in Mg(2+) homeostasis and transport in diabetic cardiac ventricular myocytes were evaluated. Cardiac tissue and isolated cardiac ventricular myocytes from diabetic animals displayed a decrease in total Mg(2+) content that affected all cellular compartments. This decrease was associated with a marked reduction in cellular protein and ATP content. Diabetic ventricular myocytes were unable to mobilize Mg(2+) following beta-adrenergic receptor stimulation or addition of cell permeant cyclic-AMP. Sarcolemma vesicles purified from diabetic animals, however, transported Mg(2+) normally as compared to vesicles from non-diabetic animals. Treatment of diabetic animals with exogenous insulin for 2 weeks restored ATP and protein levels as well as Mg(2+) homeostasis and transport to levels comparable to those observed in non-diabetic animals. These results suggest that in diabetic cardiac cells Mg(2+) homeostasis and extrusion via beta-adrenergic/cAMP signaling are markedly affected by the concomitant decrease in protein and ATP content. As Mg(2+) regulates numerous cellular enzymes and functions, including protein synthesis, these results provide a new rationale to interpret some aspects of the cardiac dysfunctions observed under diabetic conditions.  相似文献   

4.
1. The ATP sites. Homotropic interactions between ATP sites have been studied in a very large range of Na+ and K+ concentrations. The ( Na+, K+)-activated ATPase displays Michaelis-Menten kinetics for ATP under standard concentration conditions of Na+ (100 mM) and K+ (10 mM). The steady-state kinetics behavior changes at very low concentrations of K+ where negative cooperativity is observed. The existence of a high affinity and a low affinity site for ATP was clearly demonstrated from the study of the ATP stimulated hydrolysis of p-nitrophenylphosphate in the presence of Na+ and K+. The ratio of apparent affinities of high and low affinity sites for ATP is 86 at pH 7.5. 2. The Na+ sites. The binding of Na+ to its specific stimulatory sites (internal sites) is characterized by positive cooperativity with a Hill coefficient n(H(Na+))=2.0. Homotropic interactions between Na+ sites are unaffected by variations of the K+ concentration. 3. The K+ sites. (a) Binding of K+ to the (external) stimulatory site of the ATPase has been analyzed by following the (Na+, K+)-ATPase activity as well as the p-nitrophenylphosphatase activity in the presence of Na+ and K+ (with or without ATP). Binding is characterized by a Hill coefficient of 1.0 and a K(0.5(K+))=0.1 to 0.8 mM. The absence of positive or negative cooperativity persists between 5 mM and 100 mM Na+. (b) The analysis of the p-nitrophenylphosphatase or of the 2, 4 dinitrophenylphosphatase activity in the presence of K+ alone indicates the existence of low affinity sites for K+ with positive homotropic interactions. The characteristics of stimulation in that case are, K(0.5)=5 mM, n(H)=1.9. The properties of this family of site(s) are the following: firstly, saturation of the low affinity site(s) by K+ prevents ATP binding to its high affinity internal site. Secondly, saturation of the low affinity sites for K+ prevents binding of Na+ to its internal sites. Thirdly, this family of sites disappears in the presence of ATP, p-nitrophenylphosphate or of both substrates, when Na+ binds to its internal sites. Na+ binding to its specific stimulatory sites provokes the formation of the high affinity type of site for K+. 4. Mg2+ stimulation of the (Na+, K+)-ATPase is characterized by a Hill coefficient n(H(Mg2+))=1.0 and a K(0.5(Mg2+))=1 mM stimulation is essentially a V effect. Heterotropic effects between binding of Mg2+ and substrate to their respective sites are small. Heterotropic interactions between the Ms2+, Na+ and K+ sites are also small. 5. The fluidity of membrane lipids also controls the (Na+, K+)-ATPase activity. Phase transitions or separations in the membrane hardly affect recognition properties of substrates, Na+, K+ and Mg2+ for their respective sites on both sides of the membrane. Only the rate of the catalytic transformation is affected.  相似文献   

5.
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl- was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCalpha. In non-Mg2+ -loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+ -loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCalpha or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+ -loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+ -loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl-. Mg2+ -loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl-]i.  相似文献   

6.
Membrane phosphorylation and nucleoside triphosphatase activity of sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle were studied using ATP and ITP as substrates. The Ca2+ concentration was varied over a range large enough to saturate either the high affinity Ca2+-binding site or both high and low affinity binding sites. In intact vesicles, which are able to accumulate Ca2+, the steady state level of enzyme phosphorylated by either ATP or ITP is already high in 0.02 mM Ca2+ and does not vary as the Ca2+ concentration is increased to 10 mM. Essentially the same pattern of membrane phosphorylation by ATP is observed when leaky vesicles, which are unable to accumulate Ca2+, are used. However, for leaky vesicles, when ITP is used as substrate, the phosphoenzyme level increases 3- to 4-fold when the Ca2+ concentration is raised from 0.02 to 20 mM. When Mg2+ is omitted from the assay medum, the degree of membrane phosphorylation by ATP varies with Ca2+ in the same way as when ITP is used in the presence of Mg2+. Membrane phosphorylation of leaky vesicles by either ATP or ITP is observed in the absence of added Mg2+. When these vesicles are incubated in media containing ITP and 0.1 mM Ca2+, addition of Mg2+ up to 10 mM simultaneously decreases the steady state level of phosphoenzyme and increases the rate of ITP hydrolysis. When ATP is used, the addition of 10 mM Mg2+ increases both the steady state level of phosphoenzyme and the rate of ATP hydrolysis. When the Ca2+ concentration is raised to 10 or 20 mM, the degree of membrane phosphorylation by either ATP or ITP is maximal even in the absence of added Mg2+ and does not vary with the addition of 10 mM Mg2+. In these conditions the ATPase and ITPase activities are activated by Mg2+, although not to the level observed in 0.1 mM Ca2+. An excess of Mg2+ inhibits both the rate of hydrolysis and membrane phosphorylation by either ATP or ITP.  相似文献   

7.
Ouabain-sensitive Na+ and K+ fluxes and ATP content were determined in high potassium sheep erythrocytes at different values of membrane potential and internal pH. Membrane potential was adjusted by suspending erythrocytes in media containing different concentrations of MgCl2 and sucrose. Concomitantly either the external pH was changed sufficiently to maintain a constant internal pH or the external pH was kept constant with a resultant change of internal pH. The erythrocytes were preincubated before the flux experiment started in a medium which produced increased ATP content in order to avoid substrate limitation of the pump. It was found that an increased cellular pH reduced the rates of active transport of Na+ and K+ without significantly altering the ratio of pumped Na+/K+. This reduction was not due to limitation in the supply of ATP although ATP content decreased when internal pH increased. Changes of membrane potential in the range between -10 and +60 mV at constant internal pH did not affect the rates of active transport of Na+ or K+.  相似文献   

8.
When pig liver phosphorylase kinase was assayed at various concentrations of Mg2+, about 2-fold stimulation was observed around 2-3 mM Mg2+ (Mg2+/ATP ratio, 20-30) compared with the activity at 0.3 mM Mg2+ (Mg2+/ATP ratio, 3). This stimulation was specific for Mg2+ among the divalent cations tested and the process was reversible. Km values for ATP and phosphorylase b were decreased 3.6- and 9.5-fold, respectively, at 3 mM Mg2+ compared with those obtained at 0.3 mM Mg2+. These results indicate that the activity of liver phosphorylase kinase is influenced by free Mg2+.  相似文献   

9.
Ethanol (EtOH) administration to rats for 4 wk markedly decreased Mg(2+) content in several tissues, including liver. Total cellular Mg(2+) accounted for 26.8 +/- 2.4 vs. 36.0 +/- 1.4 nmol Mg(2+)/mg protein in hepatocytes from EtOH-fed and control rats, respectively, and paralleled a 13% decrease in cellular ATP content. Stimulation of alpha(1)- or beta-adrenergic receptor or acute EtOH administration did not elicit an extrusion of Mg(2+) from liver cells of EtOH-fed rats while releasing 5% of total tissue Mg(2+) content from hepatocytes of control rats. Despite the 25% decrease in Mg(2+) content, hepatocytes from EtOH-fed rats did not accumulate Mg(2+) following stimulation of protein kinase C signaling pathway, whereas control hepatocytes accumulated approximately 2 nmol Mg(2+). mg protein(-1). 4 min(-1). Together, these data indicate that Mg(2+) homeostasis and transport are markedly impaired in liver cells after prolonged exposure to alcohol. The inability of liver cells, and possibly other tissues, to accumulate Mg(2+) can help explain the reduction in tissue Mg(2+) content following chronic alcohol consumption.  相似文献   

10.
Protons as substitutes for sodium and potassium in the sodium pump reaction   总被引:6,自引:0,他引:6  
The role of protons as substitutes for Na+ and/or K+ in the sodium pump reaction was examined using inside-out membrane vesicles derived from human red cells. Na+-like effects of protons suggested previously (Blostein, R. (1985) J. Biol. Chem. 260, 829-833) were substantiated by the following observations: (i) in the absence of extravesicular (cytoplasmic) Na+, an increase in cytoplasmic [H+] increased both strophanthidin-sensitive ATP hydrolysis (nu) and the steady-state level of phosphoenzyme, EP, and (ii) as [H+] is increased, the Na+/ATP coupling ratio is decreased. K+-like effects of protons were evidenced in the following results: (i) an increase in nu, decrease in EP, and hence increase in EP turnover (nu/EP) occur when intravesicular (extracellular) [H+] is increased; (ii) an increase in the rate of Na+ influx into K+(Rb+)-free inside-out vesicles and (iii) a decrease in Rb+/ATP coupling occur when [H+] is increased. Direct evidence for H+ being translocated in place of cytoplasmic Na+ and extracellular K+ was obtained by monitoring pH changes using fluorescein isothiocyanate-dextran-filled vesicles derived from 4',4-diisothiocyano-2',2-stilbene disulfonate-treated cells. With the initial pHi = pHo = pH 6.2, a strophanthidin-sensitive decrease in pHi was observed following addition of ATP provided the vesicles contained K+. This pH gradient was abolished following addition of Na+. With alkali cation-free inside-out vesicles, a strophanthidin-sensitive increase in pH was observed upon addition of both ATP and Na+. The foregoing changes in pHi were not affected by the addition of tetrabutylammonium to dissipate any membrane potential and were not observed at pH 6.8. These ATP-dependent cardiac glycoside-sensitive proton movements indicate Na,K-ATPase mediated Na+/H+ exchange in the absence of extracellular K+ as well as H+/K+ exchange in the absence of cytoplasmic Na+.  相似文献   

11.
K+ appears to decrease the affinity of the (Na+ + K+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) for its substrate, Mg2+ - ATP, and Mg2+ - ATP, in turn, appears to decrease the affinity of the enzyme for K+. These antagonisms have been investigated in terms of a quantitative model defining the magnitude of the effects as well as identifying the class of K+ sites on the enzyme involved. K+ increased the apparent Km for Mg2+ - ATP, an effect that was antagonized competitively by Na+. The data can be fitted to a model in which Mg2+ - ATP binding is prevented by occupancy of alpha-sites on the enzyme by K+ (i.e. sites of moderate affinity for K+ accessible on the "free" non-phosphorylated enzyme, in situ on the external membrane surface). By contrast, occupancy of these alpha-sites by Na+ has no effect on Mg2+ - ATP binding to the enzyme. On the other hand, Mg2+ - ATP decreased the apparent affinity of the enzyme for K+ at the alpha-sites, in terms of (i) the KD for K+ measured by K+-accelerated inactivation of the enzyme by F-, and (ii) the concentration of K+ for half-maximal activation of the K+-dependent phosphatase reaction (which reflects the terminal hydrolytic steps of the overall ATPase reaction). These data fit the same quantitative model. Although this formulation does not support schemes in which ATP binding effects the release of transported K+ from discharge sites, it is consistent with observations that K+ can inhibit the enzyme at low substrate concentrations, and that Li+, which has poor efficacy when occupying these alpha-sites, can stimulate enzymatic activity at high K+ concentrations by displacing the inhibitory K+.  相似文献   

12.
Vesicles containing a purified shark rectal gland (sodium + potassium)-activated adenosine triphosphatase-(NaK ATPase) were prepared by dialyzing for 2 days egg lecithin, cholate, and the NaK ATPase purified from the rectal gland of Squalus acanthias. These vesicles were capable of both Na+ and K+ transport. Studies of K+ transport were made by measuring the ATP-stimulated transport outward of 42K+ or 86Rb+. Vesicles were preloaded with isotope by equilibration at 4 degrees for 1 to 3 days. Transport of 42K+ or 86Rb+ was initiated by addition of MgATP to the vesicles. The ATP-dependent exit of either isotope was the same. Experiments are presented which show that this loss of isotope was not due to changes in ion binding but rather due to a loss in the amount of ion trapped in the vesicular volume. The transport of K+ was dependent on external Mg2+. CTP was almost as effective as ATP in stimulating K+ transport, while UTP was relatively ineffective. These effects of nucleotides parallel their effects on Na+ accumulation and their effectiveness as substrates for the enzyme. Potassium transport was inhibited by ouabain and required the presence of Na+. The following asymmetries were seen: (a) addition of external Mg2+ supported K+ transport; (b) ouabain inhibited K+ transport only if it was present inside the vesicles; (c) addition of external Na+ to the vesicles stimulated K+ transport. External Li+ was ineffective as a Na+ substitute. The specific requirement of external Na+ for K+ transport indicates that K+ exit is coupled to Na+ entry. Changes in the internal vesicular ion concentrations were studied with vesicles prepared in 20 mM NaCl and 50 mM KCl. After 1 hour of transport at 25 degrees, a typical Na+ concentration in the vesicles in the presence of ATP was 72 mM. A typical K+ concentration in the vesicles was 10 mM as measured with 42K+ or 6 mM as measured with 86Rb+. The following relationships have been calculated for Na+ transport, K+ transport and ATP hydrolysis: Na+/ATP = 1.42, K+/ATP =1.04, and Na+/K+ = 1.43. The ratio of 2.8 Na+ transported in to 2 K+ transported out is very close to the value reported for the red cell membrane. Potassium-potassium exchange similar to that observed in the red cell membrane and attributed to the Na+-K+ pump (stimulated by ATP and orthophosphate and inhibited by ouabain) was observed when vesicles were prepared in the absence of Na+. The results reported in this paper prove that the shark rectal gland NaK ATPase, which is 90 to 95% pure, is the isolated pump for the coupled transports of Na+ and K+.  相似文献   

13.
Previous studies have indicated that the presence of cytotoxic levels of menadione (2-methyl-1,4-naphthoquinone) causes rapid changes in intracellular thiol and Ca2+ homeostasis in isolated rat hepatocytes. The present investigation was undertaken to examine these effects in the intact liver. Rat livers were therefore perfused with Krebs-Henseleit buffer containing 1.3 mM Ca2+ using a single-pass mode, and the perfusate Ca2+ level was monitored with an on-line Ca2+-selective electrode. Infusion of menadione elicited an increased O2 uptake by the liver, followed by a dose-dependent decrease in the perfusate level of Ca2+. Hepatic accumulation of Ca2+ was accompanied by stimulation of cytosolic phosphorylase a activity. Cessation of menadione infusion resulted in gradual recovery of perfusate Ca2+ to base levels. Ca2+ uptake was not accompanied by decreases in reduced pyridine nucleotide or ATP levels in the liver as evidenced by measurements either during maximal Ca2+ uptake or after recovery. However, Ca2+ uptake was correlated with decreased glutathione and increased glutathione disulfide levels in the liver, both of which reversed during recovery from Ca2+ uptake. Moreover, depletion of hepatic glutathione by pretreatment with diethylmaleate resulted in increased Ca2+ uptake during menadione infusion. The amount of protein-bound mixed disulfides showed a particularly striking relationship to Ca2+ uptake, reaching a maximal level during Ca2+ uptake and reversing toward normal value during recovery from Ca2+ accumulation. The present findings suggest that menadione-induced Ca2+ uptake is due to plasma membrane dysfunction as a result of loss of protein thiol groups critical for maintaining the plasma membrane Ca2+ extrusion mechanism. Our model offers a particularly useful opportunity to study mechanisms underlying toxic disturbances in Ca2+ homeostasis in the intact liver, since Ca2+ fluxes can be monitored under conditions in which cellular control mechanisms are not obliterated by excessive toxicity.  相似文献   

14.
The kinetic data of magnesium and inorganic phosphate inhibition of the (Na+,K+)-dependent ATP hydrolysis are consistent with a model where both ligands act independently and their release in the ATPase cycle is an ordered process where inorganic phosphate is released first. The effects of magnesium on the stimulation of the ATPase activity by Na+, K+ and ATP, and the inhibition of that activity by inorganic phosphate, are consistent with Mg2+ acting both as a 'product' and as a dead-end inhibitor. The dead-end Mg-enzyme complex would be produced with an enzyme form located downstream in the reaction sequence from the point where Mg2+ acts as a 'product' inhibitor. In the absence of K+, Mg2+ inhibition was reduced when either Na+ or ATP concentrations were increased well beyond those concentrations needed to saturate their high-affinity sites. This ATP effect suggests that the dead-end Mg-enzyme complex formation is affected by the speed of the E2-E1 conformational change. The present model is consistent with the formation of an Mg-phosphoenzyme complex insensitive to K+ which could become K+-sensitive in the presence of high Na+ concentrations. These Mg-enzyme complexes appear as intermediaries in the Na+-ATPase activity found in the absence of external Na+ and K+. These results can be interpreted on the basis of Mg2+ binding to a single site in the enzyme molecule. In addition, these experiments provide kinetic evidence indicating that the stimulation by external Na+ of the ATPase activity in the absence of K+ is due to a K+-like action of Na+ on the external K+ sites.  相似文献   

15.
Intracellular Na+ is approximately two times higher in diabetic cardiomyocytes than in control. We hypothesized that the increase in Na+i activates the mitochondrial membrane Na+/Ca2+ exchanger, which leads to loss of intramitochondrial Ca2+, with a subsequent alteration (generally depression) in bioenergetic function. To further evaluate this hypothesis, mitochondria were isolated from hearts of control and streptozotocin-induced (4 weeks) diabetic rats. Respiratory function and ATP synthesis were studied using routine polarography and 31P-NMR methods, respectively. While addition of Na+ (1-10 mM) decreased State 3 respiration and rate of oxidative phosphorylation in both diabetic and control mitochondria, the decreases were significantly greater for diabetic than for control. The Na+ effect was reversed by providing different levels of extramitochondrial Ca2+ (larger Ca2+ levels were needed to reverse the Na+ depressant effect in diabetes mellitus than in control) and by inhibiting the Na+/Ca2+ exchanger function with diltiazem (a specific blocker of Na+/Ca2+ exchange that prevents Ca2+ from leaving the mitochondrial matrix). On the other hand, the Na+ depressant effect was enhanced by Ruthenium Red (RR, a blocker of mitochondrial Ca2+ uptake, which decreases intramitochondrial Ca2+). The RR effect on Na+ depression of mitochondrial bioenergetic function was larger in diabetic than control. These findings suggest that intramitochondrial Ca2+ levels could be lower in diabetic than control and that the Na+ depressant effect has some relation to lowered intramitochondrial Ca2+. Conjoint experiments with 31P-NMR in isolated superfused mitochondria embedded in agarose beads showed that Na+ (3-30 mM) led to significantly decreased ATP levels in diabetic rats, but produced smaller changes in control. These data support our hypothesis that in diabetic cardiomyocytes, increased Na+ leads to abnormalities of oxidative processes and subsequent decrease in ATP levels, and that these changes are related to Na+ induced depletion of intramitochondrial Ca2+.  相似文献   

16.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

17.
Cholinergic-induced electrolyte transport in rat parotid acini   总被引:1,自引:0,他引:1  
Secretory responses of parotid acini occurring within 10 sec following cholinergic stimulation were characterized. 1. Measurement of membrane potentials by means of the fluorescent dye diSC3-(5) revealed a value of approximately -59 mV, which remained unaffected on stimulation. 2. Stimulation caused a rapid net loss of 42K+ that was strongly inhibited by the "maxi" K+-channel inhibitor "charybdotoxin" present in scorpion venom. 3. It was calculated that the number of open "maxi" K+-channels per cell was approximately 40 in the unstimulated state and approximately 3000 in the stimulated state. 4. Stimulation caused a transient decrease in the acinar ATP content. 5. Intracellular pH (pHi) measured by means of the fluorescent dye, BCECF, was dependent upon the presence of extracellular HCO3- as well as Na+. Under physiological conditions pHi was 7.27 and stimulation caused a transient decrease of 0.1 pH units due to HCO3- efflux. The decrease was followed by pHi recovery mediated by a Na+/H+ exchange mechanism.  相似文献   

18.
Upon activation of specific cell signaling, hepatocytes rapidly accumulate or release an amount of Mg(2+) equivalent to 10% of their total Mg(2+) content. Although it is widely accepted that Mg(2+) efflux is Na(+)-dependent, little is known about transporter identity and the overall regulation. Even less is known about the mechanism of cellular Mg(2+) uptake. Using sealed and right-sided rat liver plasma membrane vesicles representing either the basolateral (bLPM) or apical (aLPM) domain, it was possible to dissect three different Mg(2+) transport mechanisms based upon specific inhibition, localization within the plasma membrane, and directionality. The bLPM possesses only one Mg(2+) transporter, which is strictly Na(+)-dependent, bi-directional, and not inhibited by amiloride. The aLPM possesses two separate Mg(2+) transporters. One, similar to that in the bLPM because it strictly depends on Na(+) transport, and it can be differentiated from that of the bLPM because it is unidirectional and fully inhibited by amiloride. The second is a novel Ca(2+)/Mg(2+) exchanger that is unidirectional and inhibited by amiloride and imipramine. Hence, the bLPM transporter may be responsible for the exchange of Mg(2+) between hepatocytes and plasma, and vice versa, shown in livers upon specific metabolic stimulation, whereas the aLPM transporters can only extrude Mg(2+) into the biliary tract. The dissection of these three distinct pathways and, therefore, the opportunity to study each individually will greatly facilitate further characterization of these transporters and a better understanding of Mg(2+) homeostasis.  相似文献   

19.
In order to study whether Pb2+ and imidazole increase the ATP phosphorylation level of (Na+ + K+)-ATPase by the same mechanism, the effects of both compounds on phosphorylation and dephosphorylation reactions of the enzyme have been studied. Imidazole in the presence of Mg2+ increases steady-state phosphorylation of (Na+ + K+)-ATPase by decreasing, in a competitive way, the K+-sensitivity of the formed phospho-enzyme (E-P . Mg). If Pb2+ is present during phosphorylation, the rate of phosphorylation increases and a K+- and ADP-insensitive phosphointermediate (E-P . Pb) is formed. Pb2+ has no effect on the K+-sensitivity of E-P . Mg and EDTA is unable to affect the K+-insensitivity of E-P . Pb. These effects indicate that Pb2+ acts before or during phosphorylation with the enzyme. Binding of Na+ to E-P . Pb does not restore K+-sensitivity either. However, increasing Na+ during phosphorylation in the presence of Pb2+ leads to formation of the K+-sensitive intermediate (E-P . Mg), indicating that E-P . Pb is formed via a side path of the Albers-Post scheme. ATP and ADP decrease the dephosphorylation rate of both E-P . Mg and E-P . Pb. Above optimal concentration, Pb2+ also decreases the steady-state phosphorylation level both in the absence and in the presence of Na+. This inhibitory effect of Pb2+ is antagonized by Mg2+.  相似文献   

20.
The stimulation of ouabain-sensitive Na+ efflux by external Na+, K+ and Li+ was studied in control and ATP-depleted human red cells. In the presence of 5 mM Na+, with control and depleted cells, Li+ stimulated with a lower apparent affinity than K+, and gave a smaller maximal activation than K+. The ability of Na+, K+ and Li+ to activate Na+ efflux was a function of the ATP content of the cells. Relative to K+ both Na+ and Li+ became more effective activators when the ATP was reduced to about one tenth of the control values. At this low ATP concentration Na+ was absolutely more effective than K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号