首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro experiments have shown that the establishment of cell-cell contacts in intestinal epithelial cell cultures is a critical step in initiating ERK inhibition, cell cycle arrest, and induction of the differentiation process. Herein, we determined the mechanisms through which E-cadherin-mediated cell-cell contacts modulate the ERK pathway in intestinal epithelial cells. We report that: (1) removal of calcium from the culture medium of newly confluent Caco-2/15 cells (30 min, 4 mM EGTA) results in the disruption of both adherens and tight junctions and clearly decreases Akt phosphorylation while increasing MEK and ERK activities. Akt, MEK, and ERK activation levels return to control levels 60 min after calcium restoration; (2) the use of E-cadherin blocking antibodies efficiently prevents Akt phosphorylation and MEK-ERK inhibition after 70 min of calcium restoration; (3) using the PI3K inhibitor LY294002 (15 microM) in calcium switch experiments, we demonstrate that the assembly of adherens junctions activates Akt activity and triggers the inhibition of ERK1/2 activities in a PI3K-dependent manner; (4) adenoviral infection of confluent Caco-2/15 cells with a constitutively active mutant of Akt1 strongly represses ERK1/2 activities; (5) inhibition of PI3K abolishes Akt activity but leads to a rapid and sustained activation of the MEK-ERK1/2 in confluent differentiating Caco-2/15 cells, but not in undifferentiated growing Caco-2/15 cells. Our data suggest that E-cadherin engagement leads to MEK/ERK inhibition in a PI3K/Akt-dependent pathway. This mechanism may account for the role of E-cadherin in proliferation/differentiation transition along the crypt-villus axis of the human intestinal epithelium.  相似文献   

2.
3.
Interleukin-11 (IL-11) displays epithelial cytoprotective effects during intestinal injury. Antiapoptotic effects of IL-11 have been described, yet mechanisms remain unclear. Fas/CD95 death receptor signaling is upregulated in ulcerative colitis, leading to mucosal breakdown. We hypothesized that IL-11 inhibits Fas ligand (FasL)-mediated apoptosis in intestinal epithelia. Cell death was monitored in IEC-18 cells by microscopy, caspase and poly(ADP-ribose) polymerase cleavage, mitochondrial release of cytochrome c, and abundance of cytoplasmic oligonucleosomal DNA. RT-PCR was used to monitor Fas, cIAP1, cIAP2, XIAP, cFLIP, survivin, and Bcl-2 family members. Fas membrane expression was detected by immunoblot. Inhibitors of JAK2, phosphatidylinositol 3-kinase (PI3-kinase), Akt 1, MEK1 and MEK2, and p38 MAPK were used to delineate IL-11's antiapoptotic mechanisms. IL-11 did not alter Fas expression. Pretreatment with IL-11 for 24 h before FasL reduced cytoplasmic oligonucleosomal DNA by 63.2%. IL-11 also attenuated caspase-3, caspase-9, and poly(ADP-ribose) polymerase cleavage without affecting expression of activated caspase-8 p20 or cytochrome c release. IL-11 did not affect mRNA expression of the candidate antiapoptotic genes. The MEK1 and MEK2 inhibitors U-0126 and PD-98059 significantly attenuated the protection of IL-11 against caspase-3 and caspase-9 cleavage and cytoplasmic oligonucleosomal DNA accumulation. Although Akt inhibition reversed IL-11-mediated effects on caspase cleavage, it did not reverse the protective effects of IL-11 by DNA ELISA. We conclude that IL-11-dependent MEK1 and MEK2 signaling inhibits FasL-induced apoptosis. The lack of reversal of the IL-11 effect on DNA cleavage by Akt inhibition, despite antagonism of caspase cleavage, suggests that IL-11 inhibits caspase-independent cell death signaling by FasL in a MEK-dependent manner.  相似文献   

4.
A key regulator of cellular senescence, mTORC1 complex, is a target of many signaling cascades, including Ras/Raf/MEK/ERK cascade. In this paper, we investigated the role of the MEK/ERK branch of this cascade in the process of cellular senescence induced by sodium butyrate (NaBut), a histone deacetylase inhibitor (HDACI), in transformed rat-embryo fibroblasts. Suppression of MEK/ERK activity by inhibitor PD0325901 did not prevent activation of mTORC1 complex induced by NaBut treatment. Inhibition of MEK/ERK increased mTORC1 activity and activated mTORC2 complex. Activation of mTOR-containing complexes was accompanied by reorganization of the actin cytoskeleton (formation of actin stress fibers) and the appearance of cellular senescence markers. In contrast to NaBut-induced senescence, no protein accumulation was observed, probably due to increased activity of the degradation processes. Furthermore, senescence induction under suppression of MEK/ERK drastically decreased the cell viability, Thus, NaBut-induced senescence upon suppressed activity of the MEK/ERK branch of MAP kinase cascade has a more pronounced tumor-suppressing effect that is manifested by activation of both mTOR complexes, reorganization of the actin cytoskeleton and protein degradation.  相似文献   

5.
6.
7.
The Raf/MEK/extraceUular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ ERK-mediated growth arrest signaling.  相似文献   

8.
Vasopressin-mediated mitogenic signaling in intestinal epithelial cells   总被引:3,自引:0,他引:3  
The role of G protein-coupled receptorsand their ligands in intestinal epithelial cell signaling andproliferation is poorly understood. Here, we demonstrate that argininevasopressin (AVP) induces multiple intracellular signal transductionpathways in rat intestinal epithelial IEC-18 cells via aV1A receptor. Addition of AVP to these cells induces arapid and transient increase in cytosolic Ca2+concentration and promotes protein kinase D (PKD) activation through aprotein kinase C (PKC)-dependent pathway, as revealed by in vitrokinase assays and immunoblotting with an antibody that recognizesautophosphorylated PKD at Ser916. AVP also stimulates thetyrosine phosphorylation of the nonreceptor tyrosine kinaseproline-rich tyrosine kinase 2 (Pyk2) and promotes Src family kinasephosphorylation at Tyr418, indicative of Src activation.AVP induces extracellular signal-related kinase (ERK)-1(p44mapk) and ERK-2 (p42mapk) activation, aresponse prevented by treatment with mitogen-activated protein kinasekinase (MEK) inhibitors (PD-98059 and U-0126), specific PKC inhibitors(GF-I and Ro-31-8220), depletion of Ca2+ (EGTA andthapsigargin), selective epidermal growth factor receptor (EGFR)tyrosine kinase inhibitors (tyrphostin AG-1478, compound 56), or theselective Src family kinase inhibitor PP-2. Furthermore, AVP acts as apotent growth factor for IEC-18 cells, inducing DNA synthesis and cellproliferation through ERK-, Ca2+-, PKC-, EGFR tyrosinekinase-, and Src-dependent pathways.

  相似文献   

9.
Rit is a novel member of the Ras superfamily of small GTP-binding proteins that regulates signaling pathways controlling cellular fate determination. Constitutively activated mutants of Rit induce terminal differentiation of pheochromocytoma (PC6) cells resulting in a sympathetic neuron-like phenotype characterized by the development of highly-branched neurites. Rit signaling has been found to activate several downstream pathways including MEK/ERK, p38 MAPK, Ral-specific guanine nucleotide exchange factors (GEFs), and Rit associates with the Par6 cell polarity machinery. In this study, a series of Rit effector loop mutants was generated to test the importance of these cellular targets to Rit-mediated neuronal differentiation. We find that Rit-mediated neuritogenesis is dependent upon MEK/ERK MAP kinase signaling but independent of RalGEF activation. In addition, in vivo binding studies identified a novel mechanism of Par6 interaction, suggesting that the cell polarity machinery may serve to spatially restrict Rit signaling.  相似文献   

10.
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF). Cellular senescence is a major hallmark of aging and has a higher occurrence in IPF. The lung epithelium represents a major site of tissue injury, cellular senescence and aberrant activity of developmental pathways such as the WNT/β-catenin pathway in IPF. The potential impact of WNT/β-catenin signaling on alveolar epithelial senescence in general as well as in IPF, however, remains elusive. Here, we characterized alveolar epithelial cells of aged mice and assessed the contribution of chronic WNT/β-catenin signaling on alveolar epithelial type (AT) II cell senescence. Whole lungs from old (16–24 months) versus young (3 months) mice had relatively less epithelial (EpCAM+) but more inflammatory (CD45+) cells, as assessed by flow cytometry. Compared to young ATII cells, old ATII cells showed decreased expression of the ATII cell marker Surfactant Protein C along with increased expression of the ATI cell marker Hopx, accompanied by increased WNT/β-catenin activity. Notably, when placed in an organoid assay, old ATII cells exhibited decreased progenitor cell potential. Chronic canonical WNT/β-catenin activation for up to 7 days in primary ATII cells as well as alveolar epithelial cell lines induced a robust cellular senescence, whereas the non-canonical ligand WNT5A was not able to induce cellular senescence. Moreover, chronic WNT3A treatment of precision-cut lung slices (PCLS) further confirmed ATII cell senescence. Simultaneously, chronic but not acute WNT/β-catenin activation induced a profibrotic state with increased expression of the impaired ATII cell marker Keratin 8. These results suggest that chronic WNT/β-catenin activity in the IPF lung contributes to increased ATII cell senescence and reprogramming. In the fibrotic environment, WNT/β-catenin signaling thus might lead to further progenitor cell dysfunction and impaired lung repair.  相似文献   

11.
We have reported previously that protein kinase C (PKC) signaling can mediate a program of cell cycle withdrawal in IEC-18 nontransformed intestinal crypt cells, involving rapid disappearance of cyclin D1, increased expression of Cip/Kip cyclin-dependent kinase inhibitors, and activation of the growth suppressor function of pocket proteins. In the current study, we present evidence to support a requisite role for PKC alpha in mediating these effects. Furthermore, analysis of the signaling events linking PKC/PKC alpha activation to changes in the cell cycle regulatory machinery implicate the Ras/Raf/MEK/ERK cascade. PKC/PKC alpha activity promoted GTP loading of Ras, activation of Raf-1, and phosphorylation/activation of ERK. ERK activation was found to be required for critical downstream effects of PKC/PKC alpha activation, including cyclin D1 down-regulation, p21(Waf1/Cip1) induction, and cell cycle arrest. PKC-induced ERK activation was strong and sustained relative to that produced by proliferative signals, and the growth inhibitory effects of PKC agonists were dominant over proliferative events when these opposing stimuli were administered simultaneously. PKC signaling promoted cytoplasmic and nuclear accumulation of ERK activity, whereas growth factor-induced phospho-ERK was localized only in the cytoplasm. Comparison of the effects of PKC agonists that differ in their ability to sustain PKC alpha activation and growth arrest in IEC-18 cells, together with the use of selective kinase inhibitors, indicated that the length of PKC-mediated cell cycle exit is dictated by the magnitude/duration of input signal (i.e. PKC alpha activity) and of activation of the ERK cascade. The extent/duration of phospho-ERK nuclear localization may also be important determinants of the duration of PKC agonist-induced growth arrest in this system. Taken together, the data point to PKC alpha and the Ras/Raf/MEK/ERK cascade as key regulators of cell cycle withdrawal in intestinal epithelial cells.  相似文献   

12.
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion.  相似文献   

13.
14.
15.
16.
Growth hormone (GH) plays an important role in growth and metabolism by signaling via at least three major pathways, including STATs, ERK1/2, and phosphatidylinositol 3-kinase/Akt. Physiological concentrations of insulin promote growth probably by modulating liver GH receptor (GHR) levels in vivo, but the possible effects of insulin on GH-induced post-GHR signaling have yet to be studied. We hypothesized that short-term insulin, similar to the fluctuations that occur following feeding, affects GH-induced post-GHR signaling. Our present studies suggest that, in rat H4IIE hepatoma cells, insulin (4 h or less) selectively enhanced GH-induced phosphorylation of MEK1/2 and ERK1/2, but not GH-induced activation of STAT5 and Akt. Although insulin pretreatment altered GH-induced formation of Shc.Grb2.SOS complex, it did not significantly affect GH-induced activation of other signaling intermediates upstream of MEK/ERK, including JAK2, Ras, and Raf-1. Immunofluorescent staining indicated that insulin pretreatment facilitated GH-induced cell membrane translocation of MEK1/2. Insulin pretreatment also increased the amount of MEK association with its scaffolding protein, KSR. In summary, short-term insulin treatment of cultured, liver-derived cells selectively sensitized GH-induced MEK/ERK phosphorylation independent of JAK2, Ras, and Raf-1, but likely resulted from increased cell membrane translocation of MEK1/2. These findings suggest that insulin may be necessary for sensitization of cells to GH-induced ERK1/2 activation and provides a potential cellular mechanism by which insulin promotes growth.  相似文献   

17.
The BRAF gene, encoding a mitogen-activated protein kinase kinase kinase, is mutated in several human cancers, with the highest incidence occurring in cutaneous melanoma. The activating V599E mutation accounted for 80% of all mutations detected in cutaneous melanoma cell lines. Reconstitution experiments have shown that this mutation increases ectopically expressed B-Raf kinase activity and induces NIH3T3 cell transformation. Here we used tumor-derived cell lines to characterize the activity of endogenous mutated B-Raf protein and assess its specific role in transformation. We show that three cell lines (OCM-1, MKT-BR, and SP-6.5) derived from human choroidal melanoma, the most frequent primary ocular neoplasm in humans, express B-Raf containing the V599E mutation. These melanoma cells showed a 10-fold increase in endogenous B-RafV599E kinase activity and a constitutive activation of the MEK/ERK pathway that is independent of Ras. This, as well as melanoma cell proliferation, was strongly diminished by siRNA-mediated depletion of the mutant B-Raf protein. Moreover, blocking B-RafV599E-induced ERK activation by different experimental approaches significantly reduced cell proliferation and anchorage-independent growth of melanoma cells. Finally, quantitative immunoblot analysis allowed us to identify signaling and cell cycle proteins that are differentially expressed between normal melanocytes and melanoma cells. Although the expression of signaling molecules was not sensitive to U0126 in melanoma cells, the expression of a cluster of cell cycle proteins remained regulated by the B-RafV599E/MEK/ERK pathway. Our results pinpoint this pathway as an important component in choroidal melanoma cell lines.  相似文献   

18.
Normal somatic cells have a limited replicative lifespan, and serial subcultivation ultimately results in senescence. Senescent cells are irreversibly growth-arrested and show impaired responses to mitogens. Activation of the ERK signaling pathway, an absolute requirement for cell proliferation, results in nuclear relocalization of active ERKs, an event impaired in senescent fibroblasts. This impairment coincides with increased activity of the nuclear ERK phosphatase MKP2. Here we show that replicative lifespan can be altered by changes in nuclear ERK activity. Ectopic expression of MKP2 results in premature senescence. In contrast, knock-down of MKP2 expression, through transduction of MKP2 sequence-specific short hairpin RNA, or expression of the phosphatase resistant ERK2(D319N) mutant, abrogates the effects of increased endogenous MKP2 levels and senescence is postponed. Nuclear targeting of ERK2(D319N) significantly augments its effects and the transduced cultures show higher than 60% increase in replicative lifespan compared with cultures transduced with wt ERK2. Long-lived cultures senesce with altered molecular characteristics and retain the ability to express c-fos, and Rb is maintained in its inactive form. Our results support that MKP2-mediated inactivation of nuclear ERK2 represents a key event in the establishment of replicative senescence. Although it is evident that senescence can be imposed through multiple mechanisms, restoration of nuclear ERK activity can bypass a critical senescence checkpoint and, thus, extend replicative lifespan.  相似文献   

19.
Wnts are morphogens with well recognized functions during embryogenesis. Aberrant Wnt signaling has been demonstrated to be important in colorectal carcinogenesis. However, the role of Wnt in regulating normal intestinal epithelial cell proliferation is not well established. Here we determine that Wnt11 is expressed throughout the mouse intestinal tract including the epithelial cells. Conditioned media from Wnt11-secreting cells stimulated proliferation and migration of IEC6 intestinal epithelial cells. Co-culture of Wnt11-secreting cells with IEC6 cells resulted in morphological transformation of the latter as evidenced by the formation of foci, a condition also accomplished by stable transfection of IEC6 with a Wnt11-expressing construct. Treatment of IEC6 cells with Wnt11 conditioned media failed to induce nuclear translocation of beta-catenin but led to increased activities of protein kinase C and Ca(2+)/calmodulin-dependent protein kinase II. Inhibition of protein kinase C resulted in a decreased ability of Wnt11 to induce foci formation in IEC6 cells. Finally, E-cadherin was redistributed in Wnt11-treated IEC6 cells, resulting in diminished E-cadherin-mediated cell-cell contact. We conclude that Wnt11 stimulates proliferation, migration, cytoskeletal rearrangement, and contact-independent growth of IEC6 cells by a beta-catenin-independent mechanism. These findings may help understand the molecular mechanisms that regulate proliferation and migration of intestinal epithelial cells.  相似文献   

20.
Invasion of epithelial cells represents a potential pathogenic mechanism for Pseudomonas aeruginosa. We explored the role of mitogen-activated protein kinase kinases (MEK 1/2) and the extracellular signal-regulated kinases (ERK 1/2) in P. aeruginosa invasion. Treatment of corneal epithelial cells with MEK inhibitors, PD98059 (20 microM) or UO126 (100 microM), reduced P. aeruginosa invasion by approximately 60% without affecting bacterial association with the cells (P=0.0001). UO124, a negative control for UO126, had no effect on bacterial internalization. Infection of cells with an internalization-defective flhA mutant of P. aeruginosa was associated with less ERK 1/2 tyrosine phosphorylation than infection with wild-type invasive P. aeruginosa. An ERK-2 inhibitor, 5-iodotubercidin (20 microM), reduced P. aeruginosa invasion by approximately 40% (P=0.035). Together, these data suggest that P. aeruginosa internalization by epithelial cells involves a pathway(s) that includes MEK and ERK signaling proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号