首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White RH 《Biochemistry》2004,43(23):7618-7627
No orthologs are present in the genomes of the archaea encoding genes for the first two steps in the biosynthesis of the aromatic amino acids leading to 3-dehydroquinate (DHQ). The absence of these genes prompted me to examine the nature of the reactions involved in the archaeal pathway leading to DHQ in Methanocaldococcus jannaschii. Here I report that 6-deoxy-5-ketofructose 1-phosphate and l-aspartate semialdehyde are precursors to DHQ. The sugar, which is derived from glucose 6-P, supplies a "hydroxyacetone" fragment, which, via a transaldolase reaction, undergoes an aldol condensation with the l-aspartate semialdehyde to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid. Despite the fact that both hydroxyacetone and hydroxyacetone-P were measured in the cell extracts and confirmed to arise from glucose 6-P, neither compound was found to serve as a precursor to DHQ. This amino sugar then undergoes a NAD dependent oxidative deamination to produce 3,7-dideoxy-d-threo-hept-2,6-diulosonic acid which cyclizes to 3-dehydroquinate. The protein product of the M. jannaschii MJ0400 gene catalyzes the transaldolase reaction and the protein product of the MJ1249 gene catalyzes the oxidative deamination and the cyclization reactions. The DHQ is readily converted into dehydroshikimate and shikimate in M. jannaschii cell extracts, consistent with the remaining steps and genes in the pathway being the same as in the established shikimate pathway.  相似文献   

2.
2-Deoxy-scyllo-inosose (DOI) synthase is involved in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics and catalyzes the carbocyclic formation from d-glucose-6-phosphate (G-6-P) into DOI. The reaction mechanism is proposed to be similar to that of dehydroquinate (DHQ) synthase in the shikimate pathway, and includes oxidation of C-4, beta-elimination of phosphate, reduction of C-4, ring opening, and intramolecular aldol cyclization. To investigate the reaction mechanism of DOI synthase, site-directed mutational analysis of three presumable catalytically important amino acids of DOI synthase derived from the butirosin producer Bacillus circulans (BtrC) was carried out. Steady state and pre-steady state kinetic analysis suggested that E243 of BtrC is catalytically involved in the phosphate elimination step. Further analysis of the mutant E243Q of BtrC using substrate analogue, glucose-6-phosphonate, clearly confirmed that E243 was responsible to abstract a proton at C-5 in G-6-P and set off phosphate elimination. This glutamate residue is completely conserved in all DOI synthases identified so far and the corresponding amino acid of DHQ synthase is completely conserved as asparagine. Therefore, this characteristic glutamate residue of DOI synthase is a key determinant to distinguish the reaction mechanism between DOI synthase and DHQ synthase as well as primary sequence.  相似文献   

3.
The central carbon metabolism is well investigated in bacteria, but this is not the case for archaea. MJ0400-His6 from Methanocaldococcus jannaschii catalyzes the cleavage of fructose-1,6-bisphosphate (FBP) to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate with a V max of 33 mU mg−1 and a K m of 430 μM at 50 °C. MJ0400-His6 is inhibited competitively by erythrose-4-phosphate with a K i of 380 μM and displays heat stability with a half-life of c . 1 h at 100 °C. Hence, MJ0400 is the second gene encoding for an FBP aldolase in M. jannaschii . Previously, MJ0400 was shown to act as an 2-amino-3,7-dideoxy- d - threo -hept-6-ulosonic acid synthase. This indicates that MJ0400 is involved in both the carbon metabolism and the shikimate pathway in M. jannaschii .  相似文献   

4.
Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.  相似文献   

5.
The products of reactions catalyzed by Methanococcus. jannaschii (Mj) aldolase using various substrates were identified by gas chromatography (GC). Although Mj aldolase is considered a fuculose-1-phosphate aldolase based on homology searching after gene sequencing, it has not been proven to be a fuculose-1-phosphate aldolase based on its reaction products. Mj aldolase was found to catalyze reactions between glycoaldehyde or D, L-glyceraldehyde and DHAP (dihydroxyacetone phosphate). Before performing GC the ketoses produced were converted into peracetylated alditol derivatives by sequential reactions, i.e., dephosphorylation, NaBH(4) reduction, and acetylation. By comparing the GC data of final products with those of standard alditol samples, it was found that the enzymatic reactions with glycoaldehyde, D-glyceraldehyde, and D, L-glyceraldehyde produced D-ribulose-1-phosphate, D-psicose-1-phosphate, and a mixture of D-psicose and L-tagatose-1-phosphate, respectively. These results provide direct evidence that Mj aldolase is a fuculose-1-phosphate aldolase.  相似文献   

6.
K H Choi  J Shi  C E Hopkins  D R Tolan  K N Allen 《Biochemistry》2001,40(46):13868-13875
Fructose-1,6-bis(phosphate) aldolase is an essential glycolytic enzyme found in all vertebrates and higher plants that catalyzes the cleavage of fructose 1,6-bis(phosphate) (Fru-1,6-P(2)) to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). Mutations in the aldolase genes in humans cause hemolytic anemia and hereditary fructose intolerance. The structure of the aldolase-DHAP Schiff base has been determined by X-ray crystallography to 2.6 A resolution (R(cryst) = 0.213, R(free) = 0.249) by trapping the catalytic intermediate with NaBH(4) in the presence of Fru-1,6-P(2). This is the first structure of a trapped covalent intermediate for this essential glycolytic enzyme. The structure allows the elucidation of a comprehensive catalytic mechanism and identification of a conserved chemical motif in Schiff-base aldolases. The position of the bound DHAP relative to Asp33 is consistent with a role for Asp33 in deprotonation of the C4-hydroxyl leading to C-C bond cleavage. The methyl side chain of Ala31 is positioned directly opposite the C3-hydroxyl, sterically favoring the S-configuration of the substrate at this carbon. The "trigger" residue Arg303, which binds the substrate C6-phosphate group, is a ligand to the phosphate group of DHAP. The observed movement of the ligand between substrate and product phosphates may provide a structural link between the substrate cleavage and the conformational change in the C-terminus associated with product release. The position of Glu187 in relation to the DHAP Schiff base is consistent with a role for the residue in protonation of the hydroxyl group of the carbinolamine in the dehydration step, catalyzing Schiff-base formation. The overlay of the aldolase-DHAP structure with that of the covalent enzyme-dihydroxyacetone structure of the mechanistically similar transaldolase and KDPG aldolase allows the identification of a conserved Lys-Glu dyad involved in Schiff-base formation and breakdown. The overlay highlights the fact that Lys146 in aldolase is replaced in transaldolase with Asn35. The substitution in transaldolase stabilizes the enamine intermediate required for the attack of the second aldose substrate, changing the chemistry from aldolase to transaldolase.  相似文献   

7.
The initial step of the plastidic 2C-methyl-D-erythritol 4-phosphate (MEP) pathway that produces isopentenyl diphosphate is catalyzed by 1-deoxy-d-xylulose-5-phosphate synthase. To investigate whether or not 1-deoxy-d-xylulose-5-phosphate synthase catalyzes a limiting step in the MEP pathway in plants, we produced transgenic Arabidopsis plants that over- or underexpress this enzyme. Compared with non-transgenic wild-type plants, the transgenic plants accumulate different levels of various isoprenoids such as chlorophylls, tocopherols, carotenoids, abscisic acid, and gibberellins. Phenotypically, the transgenic plants had slight alterations in growth and germination rates. Because the levels of several plastidic isoprenoids correlate with changes in 1-deoxy-D-xylulose-5-phosphate synthase levels, we conclude that this enzyme catalyzes one of the rate-limiting steps of the MEP biosynthetic pathway. Furthermore, since the product of the MEP pathway is isopentenyl diphosphate, our results suggest that in plastids the pool of isopentenyl diphosphate is limiting to isprenoid production.  相似文献   

8.
In a genetic screen for Saccharomyces cerevisiae mutants hypersensitive to the inositol-depleting drugs lithium and valproate, a loss of function allele of TPI1 was identified. The TPI1 gene encodes triose phosphate isomerase, which catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate. A single mutation (N65K) in tpi1 completely abolished Tpi1p enzyme activity and led to a 30-fold increase in the intracellular DHAP concentration. The tpi1 mutant was unable to grow in the absence of inositol and exhibited the "inositol-less death" phenotype. Similarly, the pgk1 mutant, which accumulates DHAP as a result of defective conversion of 3-phosphoglyceroyl phosphate to 3-phosphoglycerate, exhibited inositol auxotrophy. DHAP as well as glyceraldehyde 3-phosphate and oxaloacetate inhibited activity of both yeast and human myo-inositol-3 phosphate synthase, the rate-limiting enzyme in de novo inositol biosynthesis. Implications for the pathology associated with TPI deficiency and responsiveness to inositol-depleting anti-bipolar drugs are discussed. This study is the first to establish a connection between perturbation of glycolysis and inhibition of de novo inositol biosynthesis.  相似文献   

9.
The aim of this work was to investigate the capacity for synthesis of starch and fatty acids from exogenous metabolites by plastids from developing embryos of oilseed rape (Brassica napus L.). A method was developed for the rapid isolation from developing embryos of intact plastids with low contamination by cytosolic enzymes. The plastids contain a complete glycolytic pathway, NADP-glucose-6-phosphate dehydrogenase, NADP-6-phosphogluconate dehydrogenase, fructose-1,6-bisphosphatase, NADP-malic enzyme, the pyruvate dehydrogenase complex (PDC), and acetyl-CoA carboxylase. Organelle fractionation studies showed that 67% of the total cellular PDC activity was in the plastids. The isolated plastids were fed with 14C-labelled carbon precursors and the incorporation of 14C into starch and fatty acids was determined. 14C from glucose-6-phosphate (G-6-P), fructose, glucose, fructose-6-phosphate and dihydroxyacetone phosphate (DHAP) was incorporated into starch in an intactness- and ATP-dependent manner. The rate of starch synthesis was highest from G-6-P, although fructose gave rates which were 70% of those from G-6-P. Glucose-1-phosphate was not utilized by intact plastids for starch synthesis. The plastids utilized pyruvate, G-6-P, DHAP, malate and acetate as substrates for fatty acid synthesis. Of these substrates, pyruvate and G-6-P supported the highest rates of synthesis. These studies show that several cytosolic metabolites may contribute to starch and/or fatty acid synthesis in the developing embryos of oilseed rape.  相似文献   

10.
Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. The kinetic constants reported previously for mammalian GFAT implicate a relatively low affinity for the acceptor substrate, fructose 6-phosphate (Fru-6-P, K(m) 0.2-1 mm). Utilizing a new sensitive assay that measures the production of glucosamine 6-phosphate (GlcN-6-P), purified recombinant human GFAT1 (hGFAT1) exhibited a K(m) for Fru-6-P of 7 microm, and was highly sensitive to product inhibition by GlcN-6-P. In a second assay method that measures the stimulation of glutaminase activity, a K(d) of 2 microm was measured for Fru-6-P binding to hGFAT1. Further, we report that the product, GlcN-6-P, is a potent competitive inhibitor for the Fru-6-P site, with a K(i) measured of 6 microm. Unlike other members of the amidotransferase family, where glutamate production is loosely coupled to amide transfer, we have demonstrated that hGFAT1 production of glutamate and GlcN-6-P are strictly coupled in the absence of inhibitors. Similar to other amidotransferases, competitive inhibitors that bind at the synthase site may inhibit the synthase activity without inhibiting the glutaminase activity at the hydrolase domain. GlcN-6-P, for example, inhibited the transfer reaction while fully activating the glutaminase activity at the hydrolase domain. Inhibition of hGFAT1 by the end product of the pathway, UDP-GlcNAc, was competitive with a K(i) of 4 microm. These data suggest that hGFAT1 is fully active at physiological levels of Fru-6-P and may be regulated by its product GlcN-6-P in addition to the pathway end product, UDP-GlcNAc.  相似文献   

11.
Class I fructose-1,6-bis(phosphate) aldolase is a glycolytic enzyme that catalyzes the cleavage of fructose 1,6-bis(phosphate) through a covalent Schiff base intermediate. Although the atomic structure of this enzyme is known, assigning catalytic roles to the various enzymic active-site residues has been hampered by the lack of a structure for the enzyme-substrate complex. A mutant aldolase, K146A, is unable to cleave the C3-C4 bond of the hexose while retaining the ability to form the covalent intermediate, although at a greatly diminished rate. The structure of rabbit muscle K146A-aldolase A, in complex with its native substrate, fructose 1,6-bis(phosphate), is determined to 2.3 A resolution by molecular replacement. The density at the hexose binding site differs between subunits of the tetramer, in that two sites show greater occupancy relative to the other two. The hexose is bound in its linear, open conformation, but not covalently linked to the Schiff base-forming Lys-229. Therefore, this structure most likely represents the bound complex of hexose just after hemiketal hydrolysis and prior to Schiff base formation. The C1-phosphate binding site involves the three backbone nitrogens of Ser-271, Gly-272, and Gly-302, and the epsilon-amino group of Lys-229. This is the same binding site previously found for the analogous phosphate of the product DHAP. The C6-phosphate binding site involves three basic side chains, Arg-303, Arg-42, and Lys-41. The residues closest to Lys-229 were relatively unchanged in position when compared to the unbound wild-type structure. The major differences between the bound and unbound enzyme structures were observed in the positions of Lys-107, Arg-303, and Arg-42, with the greatest difference in the change in conformation of Arg-303. Site-directed mutagenesis was performed on those residues with different conformations in bound versus unbound enzyme. The kinetic constants of these mutant enzymes with the substrates fructose 1, 6-bis(phosphate) and fructose 1-phosphate are consistent with their ligand interactions as revealed by the structure reported here, including differing effects on k(cat) and K(m) between the two substrates depending on whether the mutations affect C6-phosphate binding. In the unbound state, Arg-303 forms a salt bridge with Glu-34, and in the liganded structure it interacts closely with the substrate C6-phosphate. The position of the sugar in the binding site would require a large movement prior to achieving the proper position for covalent catalysis with the Schiff base-forming Lys-229. The movement most likely involves a change in the location of the more loosely bound C6-phosphate. This result suggests that the substrate has one position in the Michaelis complex and another in the covalent complex. Such movement could trigger conformational changes in the carboxyl-terminal region, which has been implicated in substrate specificity.  相似文献   

12.
Diurnal changes in the regulatory metabolite, fructose-2,6-bisphosphate (F26BP), and key metabolic intermediates of sucrose biosynthesis were studied in maize (Zea mays L. cv Pioneer 3184) during a day-night cycle. Whole leaf concentrations of dihydroxyacetonephosphate (DHAP) and fructose 1,6-bisphosphate changed markedly during the photoperiod. DHAP concentration was correlated positively with the rate of sucrose formation in vivo (assimilate export plus sucrose accumulation) and extractable activity of sucrose phosphate synthase (SPS). The changes closely followed net photosynthetic rate, which tracked irradiance. The other metabolic intermediates measured (glucose 6-phosphate, fructose 6-phosphate, and UDP-glucose) were either relatively constant over the 24 hour period or changed in a different pattern. Diurnal changes in leaf F26BP concentrations were pronounced, and fundamentally different than the pattern reported with other species. F26BP concentration decreased at the beginning of the day and remained low and constant; a 3- to 4-fold increase occurred with darkness, and slowly declined thereafter. In general, leaf F26BP concentration was negatively correlated with net photosynthetic rate, and also leaf DHAP concentration. Consequently, co-ordination of the regulation of cytosolic fructose 1,6-bisphosphatase and SPS was apparent. The results support the postulate that in maize leaves the activation state of SPS may be dependent on availability of DHAP and possibly other metabolites.  相似文献   

13.
The AROM locus of Aspergillus nidulans specifies a pentafunctional polypeptide catalysing five consecutive steps leading to the production of 5-enolpyruvylshikimate 3-phosphate in the shikimate pathway. Aided by oligonucleotide-mediated site-directed mutagenesis, the whole AROM locus and various overlapping subfragments from within it have been fused to the powerful hybrid trc promoter in the Escherichia coli plasmid pKK233-2. Expression of these subfragments in appropriate aro mutants of E. coli has (a) allowed the delineation of functional domains within the arom polypeptide, (b) shown that the arom polypeptide falls in two independently folding and functioning regions, the N-terminal half specifying 3-dehydroquinate (DHQ) synthase and EPSP synthase and the C-terminus specifying shikimate kinase, biosynthetic 3-dehydroquinase (DHQase) and shikimate dehydrogenase, and (c) strongly suggested an interaction between the DHQ synthase and EPSP synthase domains to stabilise the EPSP synthase activity. In addition an isoenzyme of biosynthetic DHQase, catabolic DHQase, encoded by the QUTE gene of A. nidulans has been transcribed from the trc promoter and upon isopropyl-thio-beta-D-galactoside induction produces up to 20% of the total soluble cell protein.  相似文献   

14.
Pyridoxal 5'-phosphate is a competitive inhibitor of glucosamine-6-phosphate synthase with respect to the substrate fructose 6-phosphate. Irreversible inactivation of pyridoxal-5'-phosphate-treated enzyme with [14C]-cyanide resulted in covalent incorporation of close to 1 mol pyridoxal 5'-phosphate/mol enzyme subunit. The enzyme-pyridoxal-5'-phosphate complex could also be inactivated by reduction with NaBH3CN. Sequence analysis of the unique radioactively labelled tryptic peptide, resulting from inactivation with [3H]NaBH3CN, identified the C-terminal nonapeptide encompassing the modified Lys603. The presence of fructose 6-phosphate protected this residue from pyridoxylation. Direct evidence that a lysine residue is involved in the binding of the substrate as a Schiff base came from the isolation at 4 degrees C of a enzyme-fructose-6-phosphate complex in a 1:1 molar ratio. Treatment of the enzyme-[14C]fructose-6-phosphate complex with NaBH3CN revealed one site of modification in the tryptic peptide map. In contrast, trapping the same complex with potassium cyanide resulted in the isolation of several radiolabelled peptides containing lysines which could potentially bind fructose 6-phosphate. However, since the radioactivity was not specifically associated with the lysine residues, it is suggested that these 14C-labelled peptides resulted from the decomposition of an unstable alpha,alpha'-dihydroxyaminonitrile adduct rather than from a lack of specificity of fructose 6-phosphate fixation. Lys603 is then the candidate of choice for fructose 6-phosphate binding since it lies at or near the active site as demonstrated by the trapping experiments with pyridoxal 5'-phosphate described above, and among the lysines which belong to the sugar-binding domain this is the only one conserved between the three members of the purF, glutamine-dependent, amidotransferase subfamily which include the glucosamine-6-phosphate synthase from Escherichia coli, Saccharomyces cerevisiae and the Rhizobium nodulation protein NodM.  相似文献   

15.
The bifunctional methylerythritol 4-phosphate cytidylyltransferase methylerythritol 2,4-cyclodiphosphate synthase (IspDF) is unusual in that it catalyzes nonconsecutive reactions in the 1-deoxy-D-xylulose 5-phosphate (DOXP) pathway of isoprenoid precursor biosynthesis. The crystal structure of IspDF from the bacterial pathogen Campylobacter jejuni reveals an elongated hexamer with D3 symmetry compatible with the dimeric 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase and trimeric 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase monofunctional enzymes. Complex formation of IspDF with 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE), the intervening enzyme activity in the pathway, has been observed in solution for the enzymes from C. jejuni and Agrobacterium tumefaciens. The monofunctional enzymes (2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, IspE, and 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase) involved in the DOXP biosynthetic pathway of Escherichia coli also show physical associations. We propose that complex formation of the three enzymes at the core of the DOXP pathway can produce an assembly localizing 18 catalytic centers for the early stages of isoprenoid biosynthesis.  相似文献   

16.
Fructose 1,6-bisphosphate aldolase catalyzes the reversible cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceraldehyde 3-phosphate or glyceraldehyde, respectively. Catalysis involves the formation of a Schiff's base intermediate formed at the epsilon-amino group of Lys229. The existing apo-enzyme structure was refined using the crystallographic free-R-factor and maximum likelihood methods that have been shown to give improved structural results that are less subject to model bias. Crystals were also soaked with the natural substrate (fructose 1,6-bisphosphate), and the crystal structure of this complex has been determined to 2.8 A. The apo structure differs from the previous Brookhaven-deposited structure (1ald) in the flexible C-terminal region. This is also the region where the native and complex structures exhibit differences. The conformational changes between native and complex structure are not large, but the observed complex does not involve the full formation of the Schiff's base intermediate, and suggests a preliminary hydrogen-bonded Michaelis complex before the formation of the covalent complex.  相似文献   

17.
The gene-enzyme relationships of the arom multienzyme complex of Schizosaccharomyces pombe that catalyzes steps two through six in the prechorismate polyaromatic amino acid biosynthetic pathway have been studied. The various mutants were subjected to biochemical analysis by direct enzymic assays. These studies have established that aro-3A, aro-3B, aro-3C, aro-3D, and aro-3E mutants lack, respectively, the enzymic activities 5-dehydroquinate synthase, 5-dehydroquinase, shekimate kinase, 3-enolpyruvylshikimate 5-phosphate synthase, and shikimate: NADP oxidoreductase. In S. pombe lack enzymic activities for the inducible quinate catabolic pathway. The functional significance of the arom aggregate is discussed.  相似文献   

18.
A new metabolite, 2,4-dihydroxyquinoline (DHQ), was identified in cultures of the bacteria Pseudomonas aeruginosa and Burkholderia thailandensis. We found that the biosynthesis of DHQ correlates with the presence of a functional PqsA, which is a product of the pqsABCDE operon responsible for the synthesis of 4-hydroxy-2-alkylquinolines (HAQs) in P. aeruginosa. However, DHQ is not a degradation product or precursor of HAQs. This finding sheds some light on the poorly understood biosynthesis pathway of HAQs, which includes important communication signals regulating the expression of virulence factors.  相似文献   

19.
Piazza GJ  Smith MG  Gibbs M 《Plant physiology》1982,70(6):1748-1758
Photoassimilation of 14CO2 by intact chloroplasts from the Crassulacean acid metabolism plant Sedum praealtum was investigated. The main water-soluble, photosynthetic products were dihydroxyacetone phosphate (DHAP), glycerate 3-phosphate (PGA), and a neutral saccharide fraction. Only a minor amount of glycolate was produced. A portion of neutral saccharide synthesis was shown to result from extrachloroplastic contamination, and the nature of this contamination was investigated with light and electron microscopy. The amount of photoassimilated carbon partitioned into starch increased at both very low and high concentrations of orthophosphate. High concentrations of exogenous PGA also stimulated starch synthesis.

DHAP and PGA were the preferred forms of carbon exported to the medium, although indirect evidence suported hexose monophosphate export. The export of PGA and DHAP to the medium was stimulated by high exogenous orthophosphate, but depletion of chloroplastic reductive pentose phosphate intermediates did not occur. As a result only a relatively small inhibition in the rate of CO2 assimilation occurred.

The rate of photoassimilation was stimulated by exogenous PGA, ribose 5-phosphate, fructose 1,6-bisphosphate, fructose 6-phosphate, and glucose 6-phosphate. Inhibition occurred with phosphoenolpyruvate and high concentrations of PGA and ribose 5-phosphate. PGA inhibition did not result from depletion of chloroplastic orthophosphate or from inhibition of ribulose 1,5-bisphosphate carboxylase. Exogenous PGA and phosphoenolpyruvate were shown to interact with the orthophosphate translocator.

  相似文献   

20.
Kim I  Kim E  Yoo S  Shin D  Min B  Song J  Park C 《Journal of bacteriology》2004,186(21):7229-7235
Methylglyoxal (MG) is a highly reactive metabolic intermediate, presumably accumulated during uncontrolled carbohydrate metabolism. The major source of MG is dihydroxyacetone phosphate, which is catalyzed by MG synthase (the mgs product) in bacteria. We observed Escherichia coli cell death when the ribose transport system, consisting of the RbsDACBK proteins, was overproduced on multicopy plasmids. Almost 100% of cell death occurs a few hours after ribose addition (>10 mM), due to an accumulation of extracellular MG as detected by (1)H-nuclear magnetic resonance ((1)H-NMR). Under lethal conditions, the concentration of MG produced in the medium reached approximately 1 mM after 4 h of ribose addition as measured by high-performance liquid chromatography. An excess of the protein RbsD, recently characterized as a mutarotase that catalyzes the conversion between the beta-pyran and beta-furan forms of ribose, was critical in accumulating the lethal level of MG, which was also shown to require ribokinase (RbsK). The intracellular level of ribose 5-phosphate increased with the presence of the protein RbsD, as determined by (31)P-NMR. As expected, a mutation in the methylglyoxal synthase gene (mgs) abolished the production of MG. These results indicate that the enhanced ribose uptake and incorporation lead to an accumulation of MG, perhaps occurring via the pentose-phosphate pathway and via glycolysis with the intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate. It was also demonstrated that a small amount of MG is synthesized by monoamine oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号