首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
2-Ketoisovalerate ferredoxin oxidoreductase (VOR) is a key enzyme in hyperthermophiles catalyzing the coenzyme A-dependent oxidative decarboxylation of mainly aliphatic amino acid-derived 2-keto acids. The very oxygen-labile enzyme purified under anaerobic conditions from a hyperthermophilic archaeon, Thermococcus profundus, is a hetero-octamer (alphabetagammadelta)(2) consisting of four different subunits, alpha = 45,000, beta = 31,000, gamma = 22,000 and delta = 13,000, respectively. Electron paramagnetic resonance and resonance Raman spectra of the purified enzyme indicate the presence of approximately three [4Fe-4S] clusters per alphabetagammadelta-protomer, although one of the clusters has a tendency to be converted to a [3Fe-4S] form during purification. The optimal temperature for the enzyme activity is 93 +/- 2 degrees C and the cognate [4Fe-4S] ferredoxin serves as an electron acceptor of the enzyme. The purified enzyme is highly oxygen-labile (t(1/2), approximately 5 min at 25 degrees C), and is partly protected in the presence of magnesium ions, thiamine pyrophosphate and sodium chloride (t(1/2), approximately 25 min at 25 degrees C).  相似文献   

3.
Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis of aromatic amino acids (AroAAs) and p-aminobenzoic acid (PABA) was demonstrated in M. maripaludis. Moreover, PABA was shown to be derived from an early intermediate in AroAA biosynthesis and not from chorismate. Following metabolic labelling with [U-(13)C]-acetate, the expected enrichments for phenylalanine and arylamine derived from PABA were observed. DKFP pathway activity was reduced following growth with aryl acids, an alternative source of the AroAAs. Lastly, a deletion mutant of aroA', which encodes the first step in the DKFP pathway, required AroAAs and PABA for growth. Complementation of the mutants by an aroA' expression vector restored the wild-type phenotype. In contrast, a deletion of aroB', which encodes the second step in the DKFP pathway, did not require AroAAs or PABA for growth. Presumably, methanococci contain an alternative activity for this step. These results identify the initial reactions of a new pathway for the biosynthesis of PABA in methanococci.  相似文献   

4.
We examined the enzymology and regulatory patterns of the aromatic amino acid pathway in 48 strains of cyanobacteria including representatives from each of the five major grouping. Extensive diversity was found in allosteric inhibition patterns of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase, not only between the major groupings but also within several of the generic groupings. Unimetabolite inhibition by phenylalanine occurred in approximately half of the strains examined; in the other strains unimetabolite inhibition by tyrosine and cumulative, concerted, and additive patterns were found. The additive patterns suggest the presence of regulatory isozymes. Even though both arogenate and prephenate dehydrogenase activities were found in some strains, it seems clear that the arogenate pathway to tyrosine is a common trait that has been highly conserved among cyanobacteria. No arogenate dehydratase activities were found. In general, prephenate dehydratase activities were activated by tyrosine and inhibited by phenylalanine. Chorismate mutase, arogenate dehydrogenase, and shikimate dehydrogenase were nearly always unregulated. Most strains preferred NADP as the cofactor for the dehydrogenase activities. The diversity in the allosteric inhibition patterns for 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase, cofactor specificities, and the presence or absence of prephenate dehydrogenase activity allowed the separation of subgroupings within several of the form genera, namely, Synechococcus, Synechocystis, Anabaena, Nostoc, and Calothrix.  相似文献   

5.
6.
7.
Given the availability of a reasonably complete phylogenetic tree constructed by means of modern nucleic acid sequencing techniques, it is sometimes possible to use biochemical-pathway characteristics as a basis to fine-tune the phylogenetic position of certain organisms making up the tree. A case in point in Serpens flexibilis, a helical bacterium shown by oligonucleotide cataloging to belong to the group Ia cluster of pseudomonads. The results show that within the group Ia pseudomonad cluster, S. flexibilis clusters with the Pseudomonas stutzeri/P. mendocina/P. alcaligenes/P. pseudoalcaligenes assemblage, which diverges from a lineage leading to P. aeruginosa and from yet another lineage leading to species of Azomonas and Azotobacter.  相似文献   

8.
In the aromatic amino acid biosynthesis pathway, chorismate presents a branch point intermediate that is converted to tryptophan, phenylalanine (Phe), and tyrosine (Tyr). In bacteria, three enzymes catalyze the conversion of chorismate to hydroxyphenylpyruvate or pyruvate. The enzymes, chorismate mutase (CM), prephenate dehydratase (PDT), and prephenate dehydrogenase (PDHG) are either present as distinct proteins or fusions combining two activities. Gene locus AF0227 of Archaeoglobus fulgidus is predicted to encode a fusion protein, AroQ, containing all three enzymatic domains. This work describes the first characterization of a trifunctional AroQ. The A. fulgidus aroQ gene was cloned and overexpressed in Escherichia coli. The recombinant protein purified as a homohexamer with specific activities of 10, 0.51, and 50 U/mg for CM, PDT, and PDHG, respectively. Tyr at 0.5 mM concentration inhibited PDHG activity by 50%, while at 1 mM PDT was activated by 70%. Phe at 5 μM inhibited PDT activity by 66% without affecting the activity of PDHG. A fusion of CM, PDT, and PDHG domains is evident in the genome of only one other organism sequenced to date, that of the hyperthermophilic archaeon, Nanoarchaeum equitans. Such fusions of contiguous activities in a biosynthetic pathway may constitute a primitive strategy for the efficient processing of labile metabolites.  相似文献   

9.
White RH  Xu H 《Biochemistry》2006,45(40):12366-12379
A biosynthetic pathway is proposed for creating 6-deoxy-5-ketofructose-1-phosphate (DKFP), a precursor sugar for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii. First, two possible routes were investigated to determine if a modified, established biosynthetic pathway could be responsible for generating 6-deoxyhexoses in M. jannaschii. Both the nucleoside diphosphate mannose pathway and a pathway involving nucleoside diphosphate derivatives of fructose-1-P, fructose-2-P, or fructose-1,6-bisP were tested and eliminated. The established pathways did not produce the expected intermediates nor did the anticipated enzymes have the predicted enzymatic activities. Because neither anticipated pathway could produce DKFP, M. jannaschii glucose-6-P metabolism was studied in detail to establish exactly how glucose-6-P is converted into DKFP. This detailed analysis showed that methylglyoxal and a fructose-1-P- or fructose-1,6-bisP-derived dihydroxyacetone-P fragment are key intermediates in DKFP production. Glucose-6-P readily converts to fructose-6-P, which in turn converts to fructose-1,6-bisP. Fructose-6-P and fructose-1,6-bisP convert into glyceraldehyde-3-P (Ga-P-3), which converts into methylglyoxal by a 2,3-elimination of phosphate. The MJ1585-derived enzyme catalyzes the condensation of methylglyoxal with a dihydroxyacetone-P fragment, which is derived from fructose-1-P and/or fructose-1,6-bisP, generating DKFP. The elimination of phosphate from Ga-P-3 proceeds by both enzymatic and chemical routes in cell extracts, producing sufficient concentrations of methylglyoxal to support the reaction. This work is the first report of methylglyoxal functioning in central metabolism.  相似文献   

10.
Summary. The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.  相似文献   

11.
Polymerase chain reaction (PCR) primers designed from a multiple alignment of predicted amino acid sequences from bacterial aroA genes were used to amplify a fragment of Lactococcus lactis DNA. An 8 kb fragment was then cloned from a lambda library and the DNA sequence of a 4.4 kb region determined. This region was found to contain the genes tyrA, aroA, aroK, and pheA, which are involved in aromatic amino acid biosynthesis and folate metabolism. TyrA has been shown to be secreted and AroK also has a signal sequence, suggesting that these proteins have a secondary function, possibly in the transport of amino acids. The aroA gene from L. lactis has been shown to complement an E. coli mutant strain deficient in this gene. The arrangement of genes involved in aromatic amino acid biosynthesis in L. lactis appears to differ from that in other organisms.  相似文献   

12.
An acetate-requiring mutant of Methanococcus maripaludis allowed efficient labeling of riboses following growth in minimal medium supplemented with [2-(13)C]acetate. Nuclear magnetic resonance and mass spectroscopic analysis of purified cytidine and uridine demonstrated that the C-1' of the ribose was about 67% enriched for 13C. This value was inconsistent with the formation of erythrose 4-phosphate (E4P) exclusively by the carboxylation of a triose. Instead, these results suggest that either (i) E4P is formed by both the nonoxidative pentose phosphate and triose carboxylation pathways or (ii) E4P is formed exclusively by the nonoxidative pentose phosphate pathway and is not a precursor of aromatic amino acids.  相似文献   

13.
Extensive diversity in features of aromatic amino acid biosynthesis and regulation has become recognized in eubacteria, but almost nothing is known about the extent to which such diversity exists within the archaebacteria. Methanohalophilus mahii, a methylotrophic halophilic methanogen, was found to synthesize l-phenylalanine and l-tyrosine via phenylpyruvate and 4-hydroxyphenylpyruvate, respectively. Enzymes capable of using l-arogenate as substrate were not found. Prephenate dehydrogenase was highly sensitive to feedback inhibition by l-tyrosine and could utilize either NADP+ (preferred) or NAD+ as cosubstrate. Tyrosine-pathway dehydrogenases having the combination of narrow specificity for a cyclohexadienyl substrate but broad specificity for pyridine nucleotide cofactor have not been described before. The chorismate mutase enzyme found is a member of a class which is insensitive to allosteric control. The most noteworthy character state was prephenate dehydratase which proved to be subject to multimetabolite control by feedback inhibitor (l-phenylalanine) and allosteric activators (l-tyrosine, l-tryptophan, l-leucine, l-methionine and l-isoleucine). This interlock type of prephenate dehydratase, also known to be broadly distributed among the gram-positive lineage of the eubacteria, was previously shown to exist in the extreme halophile, Halobacterium vallismortis. The results are consistent with the conclusion based upon 16S rRNA analyses that Methanomicrobiales and the extreme halophiles cluster together.Abbreviation DAHP 3-deoxy-d-arabino-heptulosonate-7-phosphate  相似文献   

14.
15.
The technique of affinity chromatography has been used to demonstrate that enzymes involved in the biosynthesis of tyrosine and phenylalanine in Escherichia coli undergo reversible interactions. Thus it has been shown that the aromatic amino acid aminotransferase (aromatic-amino-acid: 2-oxoglutarate amino-transferase, EC 2.6.1.57) reacts specifically with chorismate mutaseprephenate dehydrogenase (chorismate pyruvate mutase, EC 5.4.99.5 and prephenate: NAD+ oxidoreductase (decarboxylating), EC 1.3.1.12) in the absence of reactants and with chorimate mutase-prephenatedehydratase (prephenate hydro-lyase (decarboxylating), EC 4.2.1.51) in the presence of phyenylpyruvate. Tyrosine causes dissociation of the aminotransferase: mutasedehydrogenase complex while dissociation of the aminotransferase-mutasedehydratase complex occurs on omission of phenylpyruvate. Only the active form of chorismate mutase-prephenate dehydrogenase participates in complex formation.  相似文献   

16.
Mutant strains of Anabaena variabilis which are resistant to the tryptophan analogue, 6-fluorotryptophan, liberated a wide range of amino acids although none liberated tryptophan in detectable quantities. Four strains (FT-7, FT-8, FT-9, FT-10) produced predominantly alanine together with small amounts of phenylalamine and tyrosine, strain FT-2 liberated mainly phenylalanine and tyrosine and strain FT-6 liberated mainly glutamate, NH 4 + and several unidentified ninhydrin-positive compounds. Two forms of 3-deoxy-D-arbinoheptulosonate 7-phosphate (DAHP) synthase were identified in the parent strain, a tyrosine-sensitive form and a phenylalanine-sensitive form. In strains FT-2 and FT-6 the phenylalanine-sensitive enzyme was not detected and in strain FT-7 it was apparently deregulated with respect to inhibition by phenylalanine. No deregulation of anthranilate synthase was observed but mutant strains were found to have higher specific activities of this enzyme than the parent strain.Abbreviations chla chlorophyll a - 6-FT 6-fluorotryptophan - DAHP 3-deoxy-D-arabinoheptulosonate 7-phosphate - PEP phosphoenolpyruvate  相似文献   

17.
Biosynthesis of L-tyrosine (L-Tyr) and L-phenylalanine (L-Phe) is directed by the interplay of three enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which can be either converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD) or to phenylpyruvate by prephenate dehydratase (PDT). This work reports the first characterization of a trifunctional PD-CM-PDT from the smallest hyperthermophilic archaeon Nanoarchaeum equitans and a bifunctional CM-PD from its host, the crenarchaeon Ignicoccus hospitalis. Hexa-histidine tagged proteins were expressed in Escherichia coli and purified by affinity chromatography. Specific activities determined for the trifunctional enzyme were 21, 80, and 30 U/mg for CM, PD, and PDT, respectively, and 47 and 21 U/mg for bifunctional CM and PD, respectively. Unlike most PDs, these two archaeal enzymes were insensitive to regulation by L-Tyr and preferred NADP+ to NAD+ as a cofactor. Both the enzymes were highly thermally stable and exhibited maximal activity at 90 °C. N. equitans PDT was feedback inhibited by L-Phe (Ki = 0.8 µM) in a non-competitive fashion consistent with L-Phe’s combination at a site separate from that of prephenate. Our results suggest that PD from the unique symbiotic archaeal pair encompass a distinct subfamily of prephenate dehydrogenases with regard to their regulation and co-substrate specificity.  相似文献   

18.
Regulation of 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthetase was studied in eight strains of Pseudomonas which synthesize phenazine compounds. Repression studies with individual aromatic amino acids led to the finding that enzyme synthesis was repressed in only one strain, P. aureofaciens B1543p, and by only one amino acid, l-tyrosine. Feedback inhibition by the aromatic amino acids varied from strain to strain in terms of the type of inhibitory control, and the particular acid or acids which inhibited. Prephenate and chorismate, as well as a number of naturally occurring phenazine compounds, inhibited the DAHP synthetase activity to varying degrees.  相似文献   

19.
Repression of aromatic amino acid biosynthesis in Escherichia coli K-12   总被引:4,自引:20,他引:4  
Mutants of Escherichia coli K-12 were isolated in which the synthesis of the following, normally repressible enzymes of aromatic biosynthesis was constitutive: 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetases (phe and tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A. In the wild type, DAHP synthetase (phe) was multivalently repressed by phenylalanine plus tryptophan, whereas DAHP synthetase (tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A were repressed by tyrosine. DAHP synthetase (tyr) and chorismate mutase T-prephenate dehydrogenase were also repressed by phenylalanine in high concentration (10(-3)m). Besides the constitutive synthesis of DAHP synthetase (phe), the mutants had the same phenotype as strains mutated in the tyrosine regulatory gene tyrR. The mutations causing this phenotype were cotransducible with trpA, trpE, cysB, and pyrF and mapped in the same region as tyrR at approximately 26 min on the chromosome. It is concluded that these mutations may be alleles of the tyrR gene and that synthesis of the enzymes listed above is controlled by this gene. Chorismate mutase P and prephenate dehydratase activities which are carried on a single protein were repressed by phenylalanine alone and were not controlled by tyrR. Formation of this protein is presumed to be controlled by a separate, unknown regulator gene. The heat-stable phenylalanine transaminase and two enzymes of the common aromatic pathway, 5-dehydroquinate synthetase and 5-dehydroquinase, were not repressible under the conditions studied and were not affected by tyrR. DAHP synthetase (trp) and tryptophan synthetase were repressed by tryptophan and have previously been shown to be under the control of the trpR regulatory gene. These enzymes also were unaffected by tyrR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号