首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of [14C]Gly-Pro was examined using a mutant of Salmonella typhimurium (strain TN87) deficient in an X-Pro dipeptidase and an X-Pro-Y iminopeptidase. The dipeptide was taken up by one saturable transport system having a Km of 5.3 · 10?7M and a V of 1.4 nmol/mg dry wt cell per min. The uptake of Gly-Pro was not inhibited by amino acids or tripeptides and the transport system exhibited a rather broad side chain specificity for dipeptides. Dipeptides containing hydrophobic residues were the most potent inhibitors of this dipeptide transport system exhibiting Ki values between 10?8 and 10?7 M. In contrast, dipeptides containing glycine residues were particularly weak inhibitors. Finally, Gly-Pro was found to be in the intact form inside the cell and was concentrated more than 1000-fold.  相似文献   

2.
To investigate dipeptide assimilation by the liver, a series of interrelated experiments were performed in rats. Partial hepatectomy prolonged the plasma half-life (min) of Gly-Ala (3.42 +/- 0.22 versus 4.90 +/- 0.35, p less than 0.05) but had no significant effect on plasma half-life of Gly-Leu, Gly-Pro, or Gly-Sar. We then investigated the rate of disappearance (mumol X (g liver X h)-1) of the above four dipeptides (initial concentration = 1 mM) from the medium during isolated liver perfusion. The order of dipeptide disappearance was: Gly-Leu (8.75 +/- 0.65) greater than Gly-Ala (3.36 +/- 0.46) greater than Gly-Pro (1.29 +/- 0.54) greater than Gly-Sar (0.35 +/- 0.12). This order of dipeptide disappearance corresponded exactly to the order of the rates of glycine accumulation in the medium during liver perfusion with the four dipeptides. Addition of glucagon had no effect on the disappearance rate of Gly-Ala from the medium, but reduced accumulation rates of glycine (3.39 +/- 0.30 versus 1.42 +/- 30, p less than 0.01) and alanine (4.42 +/- 0.66 versus 1.35 +/- 0.39, p less than 0.01). Finally, we found that hydrolysis by the liver plasma membranes and/or perfusion medium accounted for disappearance of dipeptides. In conclusion, the liver does not appear to have a transport system for dipeptides, but assimilates dipeptides by extracellular hydrolysis. Hydrolysis is achieved by enzymes either located on the plasma membranes or released from the cytosol. The amino acid residues released as the result of dipeptide hydrolysis are then taken up by the liver.  相似文献   

3.
Active transport of dipeptides in rabbit renal brush-border membrane vesicles is energized by an inward-directed H+ gradient rather than a Na+ gradient. We examined the effects of treatment of membrane vesicles with diethylpyrocarbonate (DEP), a reagent specific for histidyl groups, on this H+ gradient-dependent dipeptide uptake. DEP inhibited the uptake of all three dipeptides studied, Gly-sarcosine, Gly-Gly, and Gly-Pro (Ki = 0.6-0.9 mM), and the inhibition was noncompetitive. The dipeptide transporter could be protected from DEP inhibition by the presence of dipeptide substrates during the treatment of the vesicles with the inhibitor, whereas leucine plus Na+ failed to offer the protection. Na+-dependent leucine uptake was also inhibited by DEP (Ki = 2.5 mM) and the amino acid transporter could be protected from the inhibition by leucine plus Na+, but not by dipeptides. Treatment of membrane vesicles with the thiol group-specific reagents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole,3-bromopyruvate, p-chloromercuribenzenesulfonic acid, and N-ethylmaleimide, also inhibited the H+ gradient-dependent dipeptide uptake. The potency of their inhibition was in the order: 7-chloro-4-nitrobenz-2-oxa-1,3-diazol greater than p-chloromercuribenzenesulfonic acid greater than 3-bromopyruvate greater than N-ethylmaleimide. The inhibition could be reversed in some cases by treatment of the membrane vesicles with reducing agents such as 2,3-dimercaptopropanol following incubation with the inhibitors. Dipeptide substrates could protect the dipeptide transporter from the inhibition. We conclude that histidyl and thiol groups are present at or near the substrate-binding site of the rabbit renal dipeptide transporter.  相似文献   

4.
In this study, we describe the rational synthesis and functional analysis of novel high affinity inhibitors for the mammalian peptide transporter PEPT2. Moreover, we demonstrate which structural properties convert a transported compound into a non-translocated inhibitor. Starting from Lys[Z(NO(2))]-Pro (where Z is benzyloxycarbonyl), which we recently identified as the first competitive high affinity inhibitor of the intestinal peptide transporter PEPT1, a series of different lysine-containing dipeptide derivatives was synthesized and studied for interaction with PEPT2 based on transport competition assays in Pichia pastoris yeast cells expressing PEPT2 heterologously and in renal SKPT cells expressing PEPT2. In addition, the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT2 was used to determine whether the compounds are transported electrogenically or block the uptake of dipeptides. Synthesis and functional analysis of Lys-Lys derivatives containing benzyloxycarbonyl or 4-nitrobenzyloxycarbonyl side chain protections provided a set of inhibitors that reversibly inhibited the uptake of dipeptides by PEPT2 with K(i) values as low as 10 +/- 1 nm. This is the highest affinity of a ligand of PEPT2 ever reported. Moreover, based on the structure-function relationship, we conclude that the spatial location of the side chain amino protecting group in a dipeptide containing a diaminocarbonic acid and its intramolecular distance from the Calpha atom are key factors for the transformation of a substrate into an inhibitor of PEPT2.  相似文献   

5.
The transport of the orally absorbed cephalosporin, cephalexin, was examined in the human epithelial cell line, Caco-2 that possesses intestinal enterocyte-like properties when cultured. In sodium-free buffer, the cells accumulated 1 mM D-[9-14C]cephalexin against a concentration gradient and obtained a distribution ratio of 3.5 within 180 min. Drug uptake was maximal when the extracellular pH was 6.0. Uptake was reduced by metabolic inhibitors and by protonophores indicating that uptake was energy- and proton-dependent. Kinetic analysis of the concentration dependence of the rate of cephalexin uptake showed that a non-saturable component (Kd of 0.18 +/- 0.01 nmol/min per mg protein per mM) and a transport system with a Km of 7.5 +/- 2.8 mM and a Vmax of 6.5 +/- 0.9 nmol/min per mg protein were responsible for drug uptake. Uptake was competitively inhibited by dipeptides. The transport carrier exhibited stereospecificity for the L-isomer of cephalexin. Drug uptake was not affected by the presence of amino acids, organic anions, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid or 4,4'-diisothiocyano-2,2'-disulfonic stilbene. Therefore, Caco-2 cells take up cephalexin by a proton-dependent dipeptide transport carrier that closely resembles the transporter present in the intestine. Caco-2 cells represent a cellular model for future studies of the dipeptide transporter.  相似文献   

6.
Pseudomonas putida assimilates peptides and hydrolyses them with intracellular peptidases. Amino acid auxotrophs (his, trp, thr or met) grew on a variety of di- and tripeptides up to twice as slowly as with free amino acids. Pseudomonas putida has separate uptake systems for both dipeptides and oligopeptides (three or more residues). Although the dipeptide system transported a variety of structurally diverse dipeptides it did not transport peptides having either unprotonatable N-terminal amino groups, blocked C-terminal carboxyl groups, D-residues, three or more residues, N-methylated peptide bonds, or beta-amino acids. Oligopeptide uptake lacked amino acid side-chain specificity, required a free N-terminal L-residue and had an upper size limit. Glycylglycyl-D,L-p-fluorophenylalanine inhibited growth of P. putida. Uptake of glycylglycyl[I-14C]alanine was rapid and inhibited by 2,4-dinitrophenol. Both dipeptide and oligopeptide uptake were constitutive. Dipeptides competed with oligopeptides for oligopeptide uptake, but oligopeptides did not compete in the dipeptide system. Final bacterial yields were 5 to 10 times greater when P. putida his was grown on histidyl di- or tripeptides rather than on free histidine because the histidyl residue was protected from catabolism by L-histidine ammonia-lyase. Methionine peptides could satisfy the methionine requirements of P. maltophilia. Generation times on glycylmethionine and glycylmethionylglycine were equal to those obtained with free methionine. Methionylglycylmethionylmethionine gave a generation time twice that of free methionine. Growth of P. maltophilia was inhibited by glycylglycyl-D,L-p-fluorophenylalanine.  相似文献   

7.
A series of L-nitroarginine-based dipeptide inhibitors are highly selective for neuronal nitric oxide synthase (nNOS) over the endothelial isoform (eNOS). Crystal structures of these dipeptides bound to both isoforms revealed two different conformations, curled in nNOS and extended in eNOS, corresponding to higher and lower binding affinity to the two isoforms, respectively. In previous studies we found that the primary reason for selectivity is that Asp597 in nNOS, which is Asn368 in eNOS, provides greater electrostatic stabilization in the inhibitor complex. While this is the case for smaller dipeptide inhibitors, electrostatic stabilization may no longer be the sole determinant for isoform selectivity with bulkier dipeptide inhibitors. Another residue farther away from the active site, Met336 in nNOS (Val106 in eNOS), is in contact with bulkier dipeptide inhibitors. Double mutants were made to exchange the D597/M336 pair in nNOS with N368/V106 in eNOS. Here we report crystal structures and inhibition constants for bulkier dipeptide inhibitors bound to nNOS and eNOS that illustrate the important role played by residues near the entry to the active site in isoform selective inhibition.  相似文献   

8.
Carrier-mediated uptake of cephalexin in human intestinal cells   总被引:2,自引:0,他引:2  
A transport carrier for cephalexin, a cephalosporin antibiotic, was identified in a human intestinal cell line, HT-29. Uptake via the carrier was inhibited by dipeptides, phe-gly, gly-pro, carnosine, and cefaclor, a close drug analog. Uptake was unaffected by the presence of amino acids. The pH optimum for uptake was 6.2. Drug uptake was not dependent on the presence of sodium and was insensitive to metabolic inhibitors. The efflux of cephalexin was stimulated by extracellular carnosine, indicating counter-transport. Taken together, drug uptake is mediated by a dipeptide transport carrier and not by an amino acid transport carrier. This is the first demonstration of the carrier in an established cell line.  相似文献   

9.
Bacterial dipeptide ABC transporters function to import a wide range of dipeptide substrates. This ability to transport a wide variety of dipeptides is conferred by the cognate substrate binding protein (SBP) of these transporters. SBPs bind dipeptides with little regard for their amino acid content. Here, we report the 1.7 A resolution structure of lipoprotein-9 (SA0422) of Staphylococcus aureus in complex with the dipeptide glycylmethionine. Experimental characterization of the subcellular location of the protein confirmed that SA0422 is an acylated, peripheral membrane protein. This is the first structure determined for an SBP of a Gram-positive dipeptide ABC transporter. Usually, binding of dipeptides occurs in a binding pocket that is largely hydrated and able to accommodate the side chains of several different amino acid residues. Unlike any other known SBP, lipoprotein-9 binds the side chains of the glycylmethionine dipeptide through very specific interactions. Lipoprotein-9 shares significant structural and sequence homology with the MetQ family of methionine SBP. Sequence comparisons between MetQ-like proteins and lipoprotein-9 suggest that the residues forming the tight interactions with the methionine side chains of the ligand are highly conserved between lipoprotein-9 and MetQ homologues, while the residues involved in coordinating the glycine residue are not. Modeling of the Vibrio cholerae MetQ and lipoprotein-9 binding pockets can account for lipoprotein-9 substrate specificity toward glycylmethionine. For this reason, we have designated lipoprotein-9 GmpC, for glycylmethionine binding protein.  相似文献   

10.
Protein glycation through Maillard reaction (MR) is a fundamental reaction both in foods and in the human body. The first step of the reaction is the formation of Amadori product (AP) that is converted into intermediate and advanced MR products during reaction development. Although the MR is not an enzymatic reaction, a certain degree of specificity in the glycation site has been observed. In the present study, we have monitored the glycation of different lysine-containing dipeptides to evaluate the influence on the NH(2) reactivity of the neighboring amino acid.Lysine dipeptides were reacted with glucose, galactose, lactose and maltose. The formation and identification of glycated compounds were monitored by mass spectrometry (MALDI-TOF and ESI-MS/MS) and by HPLC of their Fmoc derivatives. MS/MS analysis showed that the glucose APs formed on dipeptides have a characteristic fragmentation pattern: the fragment at [M - 84](+) due to the formation of pyrylium and furylium ion is mainly present in the monoglucosylated form, while the [M - 162](+) and the [M - 324](+) are more evident in the fragmentation pattern of the diglucosylated forms.The nature of the vicinal amino acids strongly affects lysine reactivity towards the different carbohydrates: the presence of hydrophobic residues such as Ile, Leu, Phe strongly increases lysine reactivity. Contrasting results were obtained with basic residues. The Lys-Arg dipeptide was among the most reactive while the Lys-Lys was not.  相似文献   

11.
12.
Cai H  Hauser M  Naider F  Becker JM 《Eukaryotic cell》2007,6(10):1805-1813
Dal5p has been shown previously to act as an allantoate/ureidosuccinate permease and to play a role in the utilization of certain dipeptides as a nitrogen source in Saccharomyces cerevisiae. Here, we provide direct evidence that dipeptides are transported by Dal5p, although the affinity of Dal5p for allantoate and ureidosuccinate is higher than that for dipeptides. Allantoate, ureidosuccinate, and to a lesser extent allantoin competed with dipeptide transport by reducing the toxicity of the peptide Ala-Eth and decreasing the accumulation of [(14)C]Gly-Leu. In contrast to the well-studied di/tripeptide transporter Ptr2p, whose substrate specificity is very broad, Dal5p preferred to transport non-N-end rule dipeptides. S. cerevisiae W303 was sensitive to the toxic peptide Ala-Eth (non-N-end rule peptide) but not Leu-Eth (N-end rule peptide). Non-N-end rule dipeptides showed better competition with the uptake of [(14)C]Gly-Leu than N-end rule dipeptides. Similar to the regulation of PTR2, DAL5 expression was influenced by the addition of Leu and by the CUP9 gene. However, DAL5 expression was downregulated in the presence of leucine and the absence of CUP9, whereas PTR2 was upregulated. Toxic dipeptide and uptake assays indicated that either Ptr2p or Dal5p was predominantly used for dipeptide transport in the common laboratory strains S288c and W303, respectively. These studies highlight the complementary activities of two dipeptide transport systems under different regulatory controls in common laboratory yeast strains, suggesting that dipeptide transport pathways evolved to respond to different environmental conditions.  相似文献   

13.
Our investigations demonstrate that proline-containing dipeptides can provoke a chemosensory response from the unicellular Tetrahymena pyriformis The chemotactic effects of the dipeptides have a close relationship with the side chain and the lipophilicity of the amino-terminal amino acid. Comparison of ‘mirror’ variants of proline-containing dipeptides points to the fact that dipeptides with small side chain and non-polar character amino acids (Gly-Pro, Ala-Pro) are preferred on the amino-terminal end. In the case of amino acids with very variable side chains, small (Pro-Gly) and the large side chain and non-polar character amino acids (Pro-Leu, Pro-Phe) on the carboxyl-terminal end can induce significant chemotactic responses. With valine on any terminus the proline-containing dipeptide induced a weak repellent effect.  相似文献   

14.
Certain formyl dipeptides and tripeptides containing methionine released histamine from human basophils at concentrations of 10(-4) to 10(-7) M. However, N-formyl amino acids did not release histamine. Tripeptides, in general, were more active than dipeptides. An acyl group was required for histamine release although an N-terminal position for Met was not essential. Histamine release from human basophils by these peptides correlated well with their chemotactic activity for rabbit leukocytes.  相似文献   

15.
Dipeptidyl peptidase I (DPPI, cathepsin C) is a lysosomal cysteine protease that can activate zymogens of several different serine proteases by one step or sequential removal of dipeptides from the N-termini of the pro-protease protein substrates. To find DPPI inhibitors more suitable for cellular applications than diazomethyl ketones, we synthesized three types of inhibitors: dipeptide acyloxymethyl ketones, fluoromethyl ketones, and vinyl sulfones (VS). The acyloxymethyl ketones inhibited DPPI slowly and are moderate inhibitors of cellular DPPI. The fluoromethyl ketones were potent, but the inhibited DPPI regained activity quickly. The dipeptide vinyl sulfones were effective inhibitors for DPPI, but they also inhibited cathepsins B, H, and L weakly. The best inhibitor, Ala-Hph-VS-Ph, had a k2/K(I) of 2,000,000M(-1)s(-1). The vinyl sulfones also inhibited intracellular DPPI, and for this application the more stable inhibitors exhibit better potency. We conclude that vinyl sulfones are promising inhibitors to study the intracellular functions of DPPI.  相似文献   

16.
Prototrophic Saccharomyces cerevisiae X2180, when grown on unsupplemented minimal medium, displayed little sensitivity to ethionine- and m-fluorophenylalanine-containing toxic dipeptides. We examined the influence of the 20 naturally occurring amino acids on sensitivity to toxic dipeptides. A number of these amino acids, at concentrations as low as 1 microM (leucine and tryptophan), produced large increases in sensitivity to leucyl-ethionine, alanyl-ethionine, and leucyl-m-fluorophenylalanine. Sensitivity to ethionine and m-fluorophenylalanine remained high under either set of conditions. The addition of 0.15 mM tryptophan to a growing culture resulted in the induction of dipeptide transport, as indicated by a 25-fold increase in the initial rate of L-leucyl-L-[3H]leucine accumulation. This increase, which was prevented by the addition of cycloheximide, began within 30 min and peaked approximately 240 min after a shift to medium containing tryptophan. Comparable increases in peptidase activity were not apparent in crude cell extracts from tryptophan-induced cultures. We concluded that S. cerevisiae possesses a specific mechanism for the induction of dipeptide transport that can respond to very low concentrations of amino acids.  相似文献   

17.
Three dipeptides (L-alanyl-L-alanine, beta-alanyl-L-histidine and L-prolylglycine), representative of distinctly different transport groups, and a dicarboxylic acid dipeptide (L-glutamyl-L-glutamic acid) showed a quantitatively equivalent decrease of absorption (mean difference, 12% disappearance 15 min-1 5 cm-1) from jejunal loops in vivo in pyridoxine deficient rats, compared with pyridoxine-repleted controls. Analysis of results for seven dipeptides, including three studied previously, indicated that pyridoxine deficiency caused a general or non-specific reduction in dipeptide transport, similar for all dipeptides. Decrease in dipeptide transport in vitamin deficiency ran parallel to, but was significantly less than, the decrease in amino acid transport, suggesting in theory involvement of pyridoxine in a common cellular efflux mechanism or, less likely, in the energetics of active transport.  相似文献   

18.
A capillary electrophoresis (CE) method has been developed and optimized for the detection of Gly-Pro dipeptide in complex biological samples: medium, cell layer and matrix obtained from long term cultured human fibroblasts of control and prolidase deficiency patients. The influence of different detergents in the sample preparation and electrophoretic conditions were investigated. The method was validated for cellular extracts with respect to limits of detection and quantitation, precision, linearity, accuracy and robustness. The optimized method was applied to real samples and revealed a significant increase of intracellular Gly-Pro dipeptide in prolidase deficiency fibroblasts with respect to the control.  相似文献   

19.
The antifungal activity of 5‐hydroxy‐4‐oxo‐l ‐norvaline (HONV), exhibited under conditions mimicking human serum, may be improved upon incorporation of this amino acid into a dipeptide structure. Several HONV‐containing dipeptides inhibited growth of human pathogenic yeasts of the Candida genus in the RPMI‐1640 medium, with minimal inhibitory concentration values in the 32 to 64 μg mL?1 range. This activity was not affected by multidrug resistance that is caused by overexpression of genes encoding drug efflux proteins. The mechanism of antifungal action of HONV dipeptides involved uptake by the oligopeptide transport system, subsequent intracellular cleavage by cytosolic peptidases, and inhibition of homoserine dehydrogenase by the released HONV. The relative transport rates determined the anticandidal activity of HONV dipeptides.  相似文献   

20.
This study was initiated to develop inhibitors of the intestinal H(+)/peptide symporter. We provide evidence that the dipeptide derivative Lys[Z(NO(2))]-Pro is an effective competitive inhibitor of mammalian PEPT1 with an apparent binding affinity of 5-10 microM. Characterization of the interaction of Lys[Z(NO(2))]-Pro with the substrate binding domain of PEPT1 has been performed in (a) monolayer cultures of human Caco-2 cells expressing PEPT1, (b) transgenic Pichia pastoris cells expressing PEPT1, and (c) Xenopus laevis oocytes expressing PEPT1. By competitive uptake studies with radiolabeled dipeptides, HPLC analysis of Lys[Z(NO(2))]-Pro in cells, and electrophysiological techniques, we unequivocally show that Lys[Z(NO(2))]-Pro binds with high affinity to PEPT1, competes competitively with various dipeptides for uptake into cells, but is not transported itself. Lack of transport was substantiated by the absence of Lys[Z(NO(2))]-Pro in Caco-2 cell extracts as determined by HPLC analysis, and by the absence of any positive inward currents in oocytes when exposed to the inhibitor. The fact that Lys[Z(NO(2))]-Pro can bind to PEPT1 from the extracellular as well as the intracellular site was shown in the oocyte expression system by a strong inhibition of dipeptide-induced currents under voltage clamp conditions. Our findings serve as a starting point for the identification of the substrate binding domain in the PEPT1 protein as well as for studies on the physiological and pharmacological role of PEPT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号