首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three species of filamentous fungi, Botrytis cinerea, Sporotrichum thermophile and Trichoderma viride, have been selected to assess the potential of utilizing filamentous fungi to degrade plant cell biomass produced by mass cell culture techniques. All three fungal species grew comparatively well on plant cell biomass with no requirement for supplementary nutrients. Of the three species assessed B. cinerea demonstrated the most growth. This species also produced the greatest yield of d-glucose. However, when culture conditions were modified, yields of d-glucose were markedly reduced indicating that the combination of species and culture conditions must be thoroughly investigated to ensure maximum product yield. The growth of filamentous fungi on plant cells also markedly affected the nature of the resulting fungal-plant cell residue, increasing the levels of soluble carbohydrates and essential amino acids with the largest increase in these materials being promoted by B. cinerea.  相似文献   

2.
3.
4.
5.
6.
Proteomics of filamentous fungi   总被引:6,自引:0,他引:6  
Proteomic analysis, defined here as the global assessment of cellular proteins expressed in a particular biological state, is a powerful tool that can provide a systematic understanding of events at the molecular level. Proteomic studies of filamentous fungi have only recently begun to appear in the literature, despite the prevalence of these organisms in the biotechnology industry, and their importance as both human and plant pathogens. Here, we review recent publications that have used a proteomic approach to develop a better understanding of filamentous fungi, highlighting sample preparation methods and whole-cell cytoplasmic proteomics, as well as subproteomics of cell envelope, mitochondrial and secreted proteins.  相似文献   

7.
Flow cytometry is an automated, laser- or impedance-based, high throughput method that allows very rapid analysis of multiple chemical and physical characteristics of single cells within a cell population. It is an extremely powerful technology that has been used for over four decades with filamentous fungi. Although single cells within a cell population are normally analysed rapidly on a cell-by-cell basis using the technique, flow cytometry can also be used to analyse cell (e.g. spore) aggregates or entire microcolonies. Living or fixed cells can be stained with a wide range of fluorescent reporters to label different cell components or measure different physiological processes. Flow cytometry is also suited for measurements of cell size, interaction, aggregation or shape using non-labelled cells by means of analysing their light scattering characteristics. Fluorescence-activated cell sorting (FACS) is a specialized form of flow cytometry that provides a method for sorting a heterogeneous mixture of cells into two or more containers based upon the fluorescence and/or light scattering properties of each cell. The major advantage of analysing cells by flow cytometry over microscopy is the speed of analysis: thousands of cells can be analysed per second or sorted in minutes. Drawbacks of flow cytometry are that specific cells cannot be followed in time and normally spatial information relating to individual cells is lacking. A big advantage over microscopy is when using FACS, cells with desired characteristics can be sorted for downstream experimentation (e.g. for growth, infection, enzyme production, gene expression assays or ‘omics’ approaches). In this review, we explain the basic concepts of flow cytometry and FACS, define its advantages and disadvantages in comparison with microscopy, and describe the wide range of applications in which these powerful technologies have been used with filamentous fungi.  相似文献   

8.
Abstract Production of protoplasts in different genera of filamentous fungi with their own lytic enzymes obtained from autolyzed cultures, as well as the regeneration of these protoplasts, has been studied. The results support the idea that the use of these autolytic enzymes could be a general method of production of protoplasts from filamentous fungi.  相似文献   

9.
Approaches to functional genomics in filamentous fungi   总被引:8,自引:0,他引:8  
The study of gene function in filamentous fungi is a field of research that has made great advances in very recent years. A number of transformation and gene manipulation strategies have been developed and applied to a diverse and rapidly expanding list of economically important filamentous fungi and oomycetes. With the significant number of fungal genomes now sequenced or being sequenced, functional genomics promises to uncover a great deal of new information in coming years. This review discusses recent advances that have been made in examining gene function in filamentous fungi and describes the advantages and limitations of the different approaches.  相似文献   

10.
Morphology and productivity of filamentous fungi   总被引:1,自引:0,他引:1  
Cultivation processes involving filamentous fungi have been optimised for decades to obtain high product yields. Several bulk chemicals like citric acid and penicillin are produced this way. A simple adaptation of cultivation parameters for new production processes is not possible though. Models explaining the correlation between process-dependent growth behaviour and productivity are therefore necessary to prevent long-lasting empiric test series. Yet, filamentous growth consists of a complex microscopic differentiation process from conidia to hyphae resulting in various macroscopically visible appearances. Early approaches to model this morphologic development are recapitulated in this review to explain current trends in this area of research. Tailoring morphology by adjusting process parameters is one side of the coin, but an ideal morphology has not even been found. This article reviews several reasons for this fact starting with nutrient supply in a fungal culture and presents recent advances in the investigation of fungal metabolism. It illustrates the challenge to unfold the relationship between morphology and productivity.  相似文献   

11.
The chitinolytic activity of nine species of filamentous fungi, classified with seven genera (specifically, Aspergillus, Penicillium, Trichoderma, Paecilomyces, Sporotrichum, Beaueria, and Mucor), was studied. When cultured in liquid medium containing 1% crystalline chitin, all fungi produced extracellular chitosans with activity varying from 0.2 U/mg protein (Sporotrichum olivaceum, Mucor sp., etc.) to 4.0-4.2 U/mg protein (Trichoderma lignorum, Aspergillus niger).  相似文献   

12.
Population genetics aims to understand causes and consequences of the genetic structure of pupulations, i.e. distributions of genetic variants in space and time. Among the most important determinants of the genetic population structure is the genetic system itself, which is the collection of processes and mechanisms responsible for the transmission of genetic information.Filamentous fungi offer excellent opportunities for studying the effects of the genetic system on genetic population structure. Apart from their advantage as laboratory organisms, they exhibit a wide variety of genetic systems. In particular, their inherent capacity for anastomosis provides unique possibilities for investigating rates and consequences of horizontal gene transfer. Furthermore, the temporary confinement of the products of meiosis in a common structure (the ascus) enables the study of competitive and antagonistic interactions between the meiotic products. An intriguing example of the latter is the phenomenon of spore killing, resulting in distorted meiotic segregation.This paper concentrates on population level research of the occurrence of vegatative incompatibility inAspergillus andNeurospora species and to what extent this will inhibit horizontal transmission of genetic information, and on spore killing inPodospora anserina.  相似文献   

13.
Woronin bodies of filamentous fungi   总被引:7,自引:0,他引:7  
  相似文献   

14.
Many filamentous fungi of all taxa can now be subject to DNA-mediated transformation. Many dominant selectable markers are available and the range available is increasing as new genes are cloned. Transformation is especially valuable in cloning genes defined by mutations with selectable phenotypes and is allowing investigation of many problems in fungi with good genetic systems. Increasingly sophisticated techniques for inactivating genes, targetingin vitro generated mutations to specific loci, and altering gene expression and its regulation are being developed. These approaches are being used to investigate the wealth of basic and applied biological problems available in filamentous fungi.  相似文献   

15.
The fitness of filamentous fungi   总被引:8,自引:0,他引:8  
Fitness is a common currency in comparative biology. Without data on fitness, hypotheses about the adaptive significance of phenotypes or basic mechanisms of evolution, for example natural selection, remain speculative. Experiments with fungi can address questions specific to fungi or questions with a broader significance. Fungi can challenge the generality of fundamental evolutionary principles, yet there are no standard measures of fungal fitness. We argue that focusing on a single aspect of a complex life cycle, or a single measure of fitness (e.g. the number of asexual spores) is appropriate. Choosing which aspect of fitness to measure can be facilitated by an understanding of how fitness measures are correlated. Choices can also be based on the ecology of a species, for example whether a fungus is semelparous and reproduces once, or iteroparous and reproduces multiple times.  相似文献   

16.
Glutamic protease distribution is limited to filamentous fungi   总被引:2,自引:0,他引:2  
Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans, which has been linked to an increased risk for atherosclerosis-related events. In this study, we examined the effect of P. gingivalis infection on human macrophages with respect to foam cell formation, the hallmark of early atherogenesis, and the potential of P. gingivalis to induce its uptake by these cells. Human monocyte-derived macrophages were incubated with low density lipoprotein and infected with P. gingivalis FDC381 or its fimbriae deficient mutant, DPG3. Consistent with a role for fimbriae in this process, strain 381 significantly increased foam cell formation as compared to DPG3. Recovery of viable P. gingivalis in antibiotic protection experiments was significantly higher for strain 381 than for DPG3. By transmission electron microscopy, the wild-type strain was shown to adhere to and enter THP-1 cells. These results suggest that properties of P. gingivalis which render it capable of adhering to/invading other cell types may also be operative in macrophages and play an important role in its atherogenic potential.  相似文献   

17.
18.
Recently, genome sequences from different fungi have become available. This information reveals that yeasts and filamentous fungi possess up to five aquaporins. Functional analyses have mainly been performed in budding yeast, Saccharomyces cerevisiae, which has two orthodox aquaporins and two aquaglyceroporins. Whereas Aqy1 is a spore-specific water channel, Aqy2 is only expressed in proliferating cells and controlled by osmotic signals. Fungal aquaglyceroporins often have long, poorly conserved terminal extensions and differ in the otherwise highly conserved NPA motifs, being NPX and NXA respectively. Three subgroups can be distinguished. Fps1-like proteins seem to be restricted to yeasts. Fps1, the osmogated glycerol export channel in S. cerevisiae, plays a central role in osmoregulation and determination of intracellular glycerol levels. Sequences important for gating have been identified within its termini. Another type of aquaglyceroporin, resembling S. cerevisiae Yfl054, has a long N-terminal extension and its physiological role is currently unknown. The third group of aquaglyceroporins, only found in filamentous fungi, have extensions of variable size. Taken together, yeasts and filamentous fungi are a fruitful resource to study the function, evolution, role and regulation of aquaporins, and the possibility to compare orthologous sequences from a large number of different organisms facilitates functional and structural studies.  相似文献   

19.
20.
The antifungal mode of action of chitosan has been studied for the last 30 years, but is still little understood. We have found that the plasma membrane forms a barrier to chitosan in chitosan‐resistant but not chitosan‐sensitive fungi. The plasma membranes of chitosan‐sensitive fungi were shown to have more polyunsaturated fatty acids than chitosan‐resistant fungi, suggesting that their permeabilization by chitosan may be dependent on membrane fluidity. A fatty acid desaturase mutant of Neurospora crassa with reduced plasma membrane fluidity exhibited increased resistance to chitosan. Steady‐state fluorescence anisotropy measurements on artificial membranes showed that chitosan binds to negatively charged phospholipids that alter plasma membrane fluidity and induces membrane permeabilization, which was greatest in membranes containing more polyunsaturated lipids. Phylogenetic analysis of fungi with known sensitivity to chitosan suggests that chitosan resistance may have evolved in nematophagous and entomopathogenic fungi, which naturally encounter chitosan during infection of arthropods and nematodes. Our findings provide a method to predict the sensitivity of a fungus to chitosan based on its plasma membrane composition, and suggests a new strategy for antifungal therapy, which involves treatments that increase plasma membrane fluidity to make fungi more sensitive to fungicides such as chitosan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号