首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aldo-keto reductase enzymes comprise a functionally diverse gene family which catalyze the NADPH-dependant reduction of a variety of carbonyl compounds. The protein sequences of 45 members of this family were aligned and phylogenetic trees were deduced from this alignment using the neighbor-joining and Fitch algorithms. The branching order of these trees indicates that the vertebrate enzymes cluster in three groups, which have a monophyletic origin distinct from the bacterial, plant, and invertebrate enzymes. A high level of conservation was observed between the vertebrate hydroxysteroid dehydrogenase enzymes, prostaglandin F synthase, and ρ-crystallin of Xenopus laevis. We infer from the phylogenetic analysis that prostaglandin F synthase may represent a recent recruit to the eicosanoid biosynthetic pathway from the hydroxysteroid dehydrogenase pathway and furthermore that, in the context of gene recruitment, Xenopus laevisρ-crystallin may represent a shared gene. Received: 26 August 1996 / Accepted: 5 June 1997  相似文献   

2.
Theories of sexual and natural selection predict coevolution of visual perception with conspecific colour and/or the light environment animals occupy. One way to test these theories is to focus on the visual system, which can be achieved by studying the opsin-based visual pigments that mediate vision. Birds vary greatly in colour, but opsin gene coding sequences and associated visual pigment spectral sensitivities are known to be rather invariant across birds. Here, I studied expression of the four cone opsin genes (Lws, Rh2, Sws2 and Sws1) in 16 species of New World warblers (Parulidae). I found levels of opsin expression vary both across species and between the sexes. Across species, female, but not male Sws2 expression is associated with an index of sexual selection, plumage dichromatism. This fits predictions of classic sexual selection models, in which the sensory system changes in females, presumably impacting female preference, and co-evolves with male plumage. Expression of the opsins at the extremes of the light spectrum, Lws and Uvs, correlates with the inferred light environment occupied by the different species. Unlike opsin spectral tuning, regulation of opsin gene expression allows for fast adaptive evolution of the visual system in response to natural and sexual selection, and in particular, sex-specific selection pressures.  相似文献   

3.
4.
Drosophilidae is a large, widely distributed family of Diptera including 61 genera, of which Drosophila is the most representative. Drosophila feeding is part of the saprophytic trophic chain, because of its dependence upon decomposing organic matter. Many species have adapted to fermenting fruit feeding or to artificial (man-made) fermentation habitats, such as cellars and breweries. Actually, the efficient exploitation of niches with alcohols is considered one of the reasons for the worldwide success of this genus. Drosophila alcohol dehydrogenase (ADH), a member of the short-chain dehydrogenase/reductase family (SDR), is responsible for the oxidation of alcohols, but its direct involvement in fitness, including alcohol tolerance and utilization, gives rise to much controversy. Thus, it remains unclear whether ADH differentiation through evolution is somehow associated with natural adaptation to new feeding niches, and thus maybe to Drosophila speciation, or if it is a simple reflection of neutral divergence correlated with time separation between species. To build a hypothesis which could shed light on this dilemma, we analyzed the amino acid variability found in the 57 protein ADH sequences reported up to now, identified the taxon-specific residues, and localized them in a three-dimensional ADH model. Our results define three regions whose shaping has been crucial for ADH differentiation and would be compatible with a contribution of ADH to Drosophila speciation. Received: 11 August 1997 / Accepted: 30 December 1997  相似文献   

5.
A novel nicotinamide adenine dinucleotide phosphate-dependent carbonyl reductase, 3-quinuclidinone reductase, was isolated from Rhodotorula rubra JCM3782. The enzyme catalyzes the asymmetric reduction of 3-quinuclidinone to (R)-3-quinuclidinol. The gene encoding the enzyme was also cloned and sequenced. A 819-bp nucleotide fragment was confirmed to be the gene encoding the 3-quinuclidinone reductase by agreement of the internal amino acid sequences of the purified enzyme. The gene encodes a total of 272 amino acid residues, and the deduced amino acid sequence shows similarity to those of several short-chain dehydrogenase/reductase family proteins. An expression vector, pWKLQ, which contains the full length 3-quinuclidinone reductase gene was constructed. Using Escherichia coli cells coexpressing the 3-quinuclidinone reductase and glucose dehydrogenase (cofactor regeneration enzyme) genes, 618 mM 3-quinuclidinone was almost stiochiometrically converted to (R)-3-quinuclidinol with an >99.9% enantiomeric excess within 21 h of reaction.  相似文献   

6.
7.
Cumulus cells secreting steroid hormones have important functions in oocyte development. Several members of the short‐chain dehydrogenase/reductase (SDR) family are critical to the biosynthesis of steroid hormones. NADPH‐dependent retinol dehydrogenase/reductase ( NRDR), a member of the SDR superfamily, is overexpressed in pig breeds that also show high levels of androstenone. However, the potential functions and regulatory mechanisms of NRDR in pig ovaries have not been reported to date. The present study demonstrated that NRDR is highly expressed in pig ovaries and is specifically located in cumulus granulosa cells. Functional studies showed that NRDR inhibition increased estradiol synthesis. Both pregnant mare serum gonadotropin and human chorionic gonadotropin downregulated the expression of NRDR in pig cumulus granulosa cells. When the relationship between reproductive traits and single‐nucleotide polymorphisms (SNPs) of the NRDR gene was examined, we found that two SNPs affected reproductive traits. SNP rs701332503 was significantly associated with a decrease in the total number of piglets born during multiparity, and rs326982309 was significantly associated with an increase in the average birth weight during primiparity. Thus, NRDR has an important role in steroid hormone biosynthesis in cumulus granulosa cells, and NRDR SNPs are associated with changes in porcine reproduction traits.  相似文献   

8.
The levels of prostaglandin 15-hydroxy dehydrogenase and reductase have been studied in the lungs of maternal, fetal and neonatal rabbits. Fetal lungs obtained at gestational age of 28–30 days (full term 31 days) had the same levels of prostaglandin dehydrogenase as the adults, while the reductase levels in the fetal lungs were only one fourth that in the adults. The lungs of maternal rabbits at near term possessed very high levels of prostaglandin dehydrogenase — approximately twenty-fold higher than in the adult non-pregnant female controls. The Δ13 reductase appeared slightly elevated during pregnancy. Neonatal animals at different ages showed the same levels of both enzymes as the near term fetus and/or the non-pregnant adults, which suggests that the development of the ability for prostaglandin metabolism is completed at least several days before birth. The high dehydrogenase levels in the near term maternal lungs indicated the requirement for extra protection against prostaglandin release during late pregnancy.  相似文献   

9.
In this study we have taken advantage of recent whole genome sequencing studies that have determined the DNA content in the heterochromatic regions of each Drosophila chromosome to directly correlate the effect on position-effect variegation of a pericentric insertion reporter line, 118E-10 with the total amount of heterochromatic DNA. Heterochromatic DNA levels were manipulated by adding or subtracting a Y chromosome as well as by the difference in the amount of pericentric heterochromatin between the X and Y chromosome. The results showed a direct, linear relationship between the amount of heterochromatic DNA in the genome and the expression of the w marker gene in the 118E-10 pericentric reporter line and that increasing amounts of heterochromatic DNA resulted in increasing amounts of pigment/gene activity. In Drosophila heterochromatic spreading and gene silencing is counteracted by H3S10 phosphorylation by the JIL-1 kinase, and we further demonstrate that the haplo-enhancer effect of JIL-1 is proportional to the amount of total heterochomatin, suggesting that JIL-1's activity is dynamically modulated to achieve a more or less constant balance depending on the levels of heterochromatic factors present.  相似文献   

10.
The regulation of glucose dehydrogenase (GLD) in Drosophila illustrates the combinatorial aspects of gene regulation in development. Furthermore, the findings serve to point up a general question about cukaryotic structural gene control: is regulation of expression always optimal?  相似文献   

11.
The insulin/insulin-like growth factor signaling pathway is involved in the regulation of the synthesis of insect gonadotropic hormones, juvenile (JH) and 20-hydroxyecdysone (20E). We carried out the immunohistochemical analysis of the insulin receptor (InR) expression in the corpus allatum (the JH-producing gland) and in the ovarian follicular cells (a site for the synthesis of 20E precursor, ecdysone) in the process of sexual maturation of D. melanogaster females and examined the influence of exogenous JH on the InR expression in these tissues. For the first time, it was demonstrated that InR was expressed in follicular cells and that its expression in corpus allatum and follicular cells of Drosophila females was stage-specific, i.e., the expression intensity in young females greatly exceeded that in mature individuals. We also found a negative feedback loop in the regulation of JH levels by the insulin signaling pathway in Drosophila adults: the experimental increase in the JH titers in young females dramatically reduced the InR expression intensity in corpus allatum and follicular cells.  相似文献   

12.
The universal chromophore of visual pigments in higher animals is 11-cisretinaldehyde. The final step in the biosynthetic pathway generating this compound is catalyzed by 11-cisretinol dehydrogenase, a membrane-bound enzyme abundantly expressed in the retinal pigment epithelium of the eye. In this work we demonstrate that the primary structure of human 11-cisretinol dehydrogenase is highly conserved with 91% identity to the bovine enzyme. The gene encoding 11-cisretinol dehydrogenase spans over ≈4.1 kb of DNA and is divided into four translated exons. Analysis of a panel of somatic cells hybrids and fluorescencein situhybridization on metaphase chromosomes revealed that the gene is located on chromosome 12q13–q14. Due to the unique role of 11-cisretinol dehydrogenase in the generation of visual pigments, it is a candidate gene for involvement in hereditary eye disease.  相似文献   

13.
The levels of prostaglandin 15-hydroxy dehydrogenase and reductase have been studied in the lungs of maternal, fetal and neonatal rabbits. Fetal lungs obtained at gestational age of 28–30 days (full term 31 days) had the same levels of prostaglandin dehydrogenase as the adults, while the reductase levels in the fetal lungs were only one fourth that in the adults. The lungs of maternal rabbits at near term possessed very high levels of prostaglandin dehydrogenase — approximately twenty-fold higher than in the adult non-pregnant female controls. The Δ13 reductase appeared slightly elevated during pregnancy. Neonatal animals at different ages showed the same levels of both enzymes as the near term fetus and/or the non-pregnant adults, which suggests that the development of the ability for prostaglandin metabolism is completed at least several days before birth. The high dehydrogenase levels in the near term maternal lungs indicated the requirement for extra protection against prostaglandin release during late pregnancy.  相似文献   

14.
1. The elements that make up the courtship behaviour of males and of females are briefly described. It is pointed out that some of the terms used, such as female ‘repelling’ behaviour, are misleading as they do not reflect the known functions of the behaviours. 2. Evidence has been presented for a number of distinct pheromones with different functions during courtship. These claims are critically examined as the evidence is incomplete and at times conflicting. It seems unlikely that any pheromones other than those acting over a very short distance are involved in courtship. There is sound evidence for an aphrodisiac pheromone produced by all females which stimulates male courtship. A pheromone, which may be the same one, is produced by males less than 12 h old, which also stimulates male courtship. No function is ascribed to this pheromone. Fertilized females either produce less aphrodisiac pheromone or they may, in addition, produce one that inhibits male courtship. Mature males may also produce an inhibitory pheromone. Females produce a contact pheromone which is species-specific and involved in sexual isolation. It is not at present clear whether this is different from the aphrodisiac pheromone. 3. There is considerable variability in the importance of vision in courtship. Many species will mate satisfactorily in the dark, suggesting that visual stimuli are not critical. Most species use vision to orient towards one another and for males to track and follow females. Even in light-independent species such as D. melanogaster, specific visual signals may be used in courtship although they are not obligatory. Thus the red eye of the male is a sexual signal for females. Conversely, some light-dependent species do not appear to make use of visual signals as a major factor in courtship. Some, however, do perform behaviours that are clearly visual and which may act to emphasize markings on wings, head or body. 4. The majority of Drosophila species perform courtship songs by vibrating one or both wings. The songs produced by males sexually stimulate the females. They are species specific and there is considerable indirect and some direct evidence that the songs are involved in sexual isolation. Males of many species produce two different songs during courtship and it is probable that one is concerned mainly with sexual stimulation and the other with species recognition. Females of certain species of Drosophila and Zaprionus also sing during courtship and these songs may aid species recognition by males. In addition males and unreceptive females perform ‘aggressive’ songs. 5. Almost all studies of Drosophila courtship have been made in very confined conditions in the laboratory. Interpretation of some of the results obtained in this way may require modification in the light of ecological research and observation of courtships under more natural conditions.  相似文献   

15.
Eyes absent: A gene family found in several metazoan phyla   总被引:4,自引:0,他引:4  
Genes related to the Drosophila eyes absent gene were identified in vertebrates (mouse and human), mollusks (squid), and nematodes (C. elegans). Proteins encoded by these genes consist of conserved C-terminal and variable N-terminal domains. In the conserved 271-amino acid C-terminal region, Drosophila and vertebrate proteins are 65–67% identical. A vertebrate homolog of eyes absent, designated Eya2, was mapped to Chromosome (Chr) 2 in the mouse and to Chr 20q13.1 in human. Eya2 shows a dynamic pattern of expression during development. In the mouse, expression of Eya2 was first detected in 8.5-day embryos in the region of head ectoderm fated to become the forebrain. At later stages of development, Eya2 is expressed in the olfactory placode and in a variety of neural crest derivatives. In the eye, expression of Eya2 was first detected after formation of the lens vesicle. At day 17.5, the highest level of Eya2 mRNA was observed in primary lens fibers. Low levels of Eya2 expression was detected in retina, sclera, and cornea. By postnatal day 10, Eya2 was expressed in secondary lens fibers, cornea, and retina. Although Eya2 is expressed relatively late in eye development, it belongs to the growing list of factors that may be essential for eye development across metazoan phyla. Like members of the Pax-6 gene family, eyes absent gene family members were probably first involved in functions not related to vision, with recruitment for visual system formation and function occurring later. Received: 23 November 1996 / Accepted: 25 February 1997  相似文献   

16.
Pigmentation of Drosophila eyes requires the concerted action of several genes, most of which have been cloned and characterized. Three of them, white, brown, and scarlet, have been directly implicated in the import of pigment precursors into the cells. These three genes encode similar proteins, belonging to the evolutionary conserved family of ATP Binding Cassette transporters. The identification of a novel mouse gene, ABC8, closely related to white is reported here, together with an analysis of its expression profile and its comparative mapping in mouse and human genome. Received: 12 February 1996 / Accepted: 14 May 1996  相似文献   

17.
18.
The function of conserved novel human genes can be efficiently addressed in genetic model organisms. From a collection of genes expressed in the Drosophila visual system, cDNAs expressed in vertebrates were identified and one similar to a novel human gene was chosen for further investigation. The results reported here characterize the Drosophila retinophilin gene and demonstrate that a similar gene is expressed in the human retina. The Drosophila and human retinophilin sequences are 50% identical, and they share an additional 16% conserved substitutions. Examination of the cDNA and genomic sequence indicates that it corresponds to the gene CG10233 of the annotated genome and predicts a 22.7 kDa protein. Polyclonal antibodies generated to a predicted retinophilin peptide recognize an antigen in Drosophila photoreceptor cells. The retinophilins encode 4 copies of a repeat associated with a Membrane Occupation and Recognition Nexus (MORN) function first discovered in junctophilins, which may interact with the plasma membrane. These results therefore show that Drosophila retinophilin is expressed in fly photoreceptor cells, demonstrate that a conserved human gene is expressed in human retina, and suggest that a mutational analysis of the Drosophila gene would be valuable.  相似文献   

19.
The tiered ommatidia of the Eastern Pale Clouded yellow butterfly, Colias erate, contain nine photoreceptor cells, four of which contribute their rhabdomeral microvilli to the distal tier of the rhabdom. We analyzed the visual pigments and spectral sensitivities of these distal photoreceptors in both sexes of Colias erate. A subset of photoreceptor cells expresses a newly discovered middle wavelength-absorbing opsin, C olias e rate Blue (CeB), in addition to two previously described middle wavelength-absorbing opsins, CeV1 and CeV2. The other photoreceptors either coexpress CeV1 and CeV2, or exclusively express a short wavelength-absorbing opsin, CeUV, or a long wavelength-absorbing opsin, CeL. Males and females have the same visual pigment expression patterns, but the photoreceptor spectral sensitivities are sexually dimorphic. The photoreceptors coexpressing three middle wavelength-absorbing opsins are broad-blue receptors in males, but in females they are narrow-blue receptors. Those with CeV1 and CeV2 are violet receptors in females, while they are shouldered-blue receptors in males. The sexual dimorphism in spectral sensitivity is caused by a sex-specific distribution of fluorescent pigment that functions as a spectral filter.  相似文献   

20.
Successful reproduction depends on interactions between numerous proteins beyond those involved directly in gamete fusion. Although such reproductive proteins evolve in response to sexual selection pressures, how networks of interacting proteins arise and evolve as reproductive phenotypes change remains an open question. Here, we investigated the molecular evolution of the ‘sex peptide network’ of Drosophila melanogaster, a functionally well‐characterized reproductive protein network. In this species, the peptide hormone sex peptide (SP) and its interacting proteins cause major changes in female physiology and behaviour after mating. In contrast, females of more distantly related Drosophila species do not respond to SP. In spite of these phenotypic differences, we detected orthologs of all network proteins across 22 diverse Drosophila species and found evidence that most orthologs likely function in reproduction throughout the genus. Within SP‐responsive species, we detected the recurrent, adaptive evolution of several network proteins, consistent with sexual selection acting to continually refine network function. We also found some evidence for adaptive evolution of several proteins along two specific phylogenetic lineages that correspond with increased expression of the SP receptor in female reproductive tracts or increased sperm length, respectively. Finally, we used gene expression profiling to examine the likely degree of functional conservation of the paralogs of an SP network protein that arose via gene duplication. Our results suggest a dynamic history for the SP network in which network members arose before the onset of robust SP‐mediated responses and then were shaped by both purifying and positive selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号