首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE OF REVIEW: Dyslipoproteinemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. Recent in-vivo kinetic studies of dyslipidemia in the metabolic syndrome are reviewed here. RECENT FINDINGS: The dysregulation of lipoprotein metabolism may be caused by a combination of overproduction of VLDL apolipoprotein B-100, decreased catabolism of apolipoprotein B-containing particles, and increased catabolism of HDL apolipoprotein A-I particles. Nutritional modifications and increased physical exercise may favourably alter lipoprotein transport by collectively decreasing the hepatic secretion of VLDL apolipoprotein B and the catabolism of HDL apolipoprotein A-I, as well as by increasing the clearance of LDL apolipoprotein B. Conventional and new pharmacological treatments, such as statins, fibrates and cholesteryl ester transfer protein inhibitors, can also correct dyslipidemia by several mechanisms, including decreased secretion and increased catabolism of apolipoprotein B, as well as increased secretion and decreased catabolism of apolipoprotein A-I. SUMMARY: Kinetic studies provide a mechanistic insight into the dysregulation and therapy of lipid and lipoprotein disorders. Future research mandates the development of new tracer methodologies with practicable in-vivo protocols for investigating fatty acid turnover, macrophage reverse cholesterol transport, cholesterol transport in plasma, corporeal cholesterol balance, and the turnover of several subpopulations of HDL particles.  相似文献   

2.
PURPOSE OF REVIEW: To review new data concerning HDL metabolism and cardiovascular disease, the concept of HDL 'functionality', and HDL kinetics in the metabolic syndrome. RECENT FINDINGS: HDL-apoA-I and apoA-II may be better predictors of cardiovascular disease than HDL-cholesterol. Cholesteryl ester transfer protein inhibition with torcetrapib does not benefit cardiovascular disease; whether this is related to 'congestion' of HDL transport or a specific off-target vasopressor effect remains unclear. Accelerated catabolism of HDL particles in metabolic syndrome could be due to increased hepatic secretion of apoB and apoC-III, hepatic steatosis, and low plasma adiponectin. The role of serum amyloid A and homocysteine is uncertain. In metabolic syndrome, therapies that could favourably alter HDL transport include weight loss, fish oils, higher dose statins, and fibrates; 'balancing feedback' may offset reduced catabolism of HDL, fenofibrate being the only agent hitherto shown to increase apoA-I production. SUMMARY: Elevating HDL-apoA-I and apoA-II may be a more important therapeutic objective than increased HDL-cholesterol. Recent studies underscore the potential value of studying HDL functionality, particularly in the metabolic syndrome. Reverse cholesterol transport can only be reliably probed at present by studying the kinetics of HDL particles or apolipoproteins; new methods are needed for investigating cellular and whole body cholesterol turnover. In metabolic syndrome, HDL-raising therapies have differential impact on HDL kinetics, the optimal endpoint being to increase transport and concentration with unchanged or accelerated catabolism.  相似文献   

3.
Elevated plasma triglyceride (TG) and reduced high density lipoprotein (HDL) concentrations are prominent features of metabolic syndrome (MS) and type 2 diabetes (T2D). Individuals with Tangier disease also have elevated plasma TG concentrations and a near absence of HDL, resulting from mutations in ATP binding cassette transporter A1 (ABCA1), which facilitates the efflux of cellular phospholipid and free cholesterol to assemble with apolipoprotein A-I (apoA-I), forming nascent HDL particles. In this review, we summarize studies focused on the regulation of hepatic very low density lipoprotein (VLDL) TG production, with particular attention on recent evidence connecting hepatic ABCA1 expression to VLDL, LDL, and HDL metabolism. Silencing ABCA1 in McArdle rat hepatoma cells results in diminished assembly of large (>10nm) nascent HDL particles, diminished PI3 kinase activation, and increased secretion of large, TG-enriched VLDL1 particles. Hepatocyte-specific ABCA1 knockout (HSKO) mice have a similar plasma lipid phenotype as Tangier disease subjects, with a two-fold elevation of plasma VLDL TG, 50% lower LDL, and 80% reduction in HDL concentrations. This lipid phenotype arises from increased hepatic secretion of VLDL1 particles, increased hepatic uptake of plasma LDL by the LDL receptor, elimination of nascent HDL particle assembly by the liver, and hypercatabolism of apoA-I by the kidney. These studies highlight a novel role for hepatic ABCA1 in the metabolism of all three major classes of plasma lipoproteins and provide a metabolic link between elevated TG and reduced HDL levels that are a common feature of Tangier disease, MS, and T2D. This article is part of a Special Issue entitled: Triglyceride Metabolism and Disease.  相似文献   

4.
High levels of expression of the ATP binding cassette transporter A1 (ABCA1) in the liver and the need to over- or underexpress hepatic ABCA1 to impact plasma HDL levels in mice suggest a major role of the liver in HDL formation and in determining circulating HDL levels. Cultured murine hepatocytes were used to examine the role of hepatic ABCA1 in mediating the lipidation of apolipoprotein A-I (apoA-I) for HDL particle formation. Exogenous apoA-I stimulated cholesterol efflux to the medium from wild-type hepatocytes, but not from ABCA1-deficient (abca1(-/-)) hepatocytes. ApoA-I induced the formation of new HDL particles and enhanced the lipidation of endogenously secreted murine apoA-I in ABCA1-expressing but not abca1(-/-) hepatocytes. ABCA1-dependent cholesterol mobilization to apoA-I increased new cholesterol synthesis, indicating depletion of the regulatory pool of hepatocyte cholesterol during HDL formation. Secretion of triacylglycerol and apoB was decreased following apoA-I incubation with ABCA1-expressing but not abca1(-/-) hepatocytes. These results support a major role for hepatocyte ABCA1 in generating a critical pool of HDL precursor particles that enhance further HDL generation and passive cholesterol mobilization in the periphery. The results also suggest that diversion of hepatocyte cholesterol into the "reverse" cholesterol transport pathway diminishes cholesterol availability for apoB-containing lipoprotein secretion by the liver.  相似文献   

5.
We investigated the in vivo metabolic fate of pre-beta HDL particles in human apolipoprotein A-I transgenic (hA-I (Tg)) mice. Pre-beta HDL tracers were assembled by incubation of [(125)I]tyramine cellobiose-labeled apolipoprotein A-I (apoA-I) with HEK293 cells expressing ABCA1. Radiolabeled pre-beta HDLs of increasing size (pre-beta1, -2, -3, and -4 HDLs) were isolated by fast-protein liquid chromatography and injected into hA-I (Tg)-recipient mice, after which plasma decay, in vivo remodeling, and tissue uptake were monitored. Pre-beta2, -3, and -4 had similar plasma die-away rates, whereas pre-beta1 HDL was removed 7-fold more rapidly. Radiolabel recovered in liver and kidney 24 h after tracer injection suggested increased (P < 0.001) liver and decreased kidney catabolism as pre-beta HDL size increased. In plasma, pre-beta1 and -2 were rapidly (<5 min) remodeled into larger HDLs, whereas pre-beta3 and -4 were remodeled into smaller HDLs. Pre-beta HDLs were similarly remodeled in vitro with control or LCAT-immunodepleted plasma, but not when incubated with phospholipid transfer protein knockout plasma. Our results suggest that initial interaction of apoA-I with ABCA1 imparts a unique conformation that partially determines the in vivo metabolic fate of apoA-I, resulting in increased liver and decreased kidney catabolism as pre-beta HDL particle size increases.  相似文献   

6.
High level of high-density lipoprotein cholesterol (HDL-cholesterol) is inversely correlated to the risk of atherosclerotic cardiovascular disease. The protective effect of HDL is mostly attributed to their metabolic functions in reverse cholesterol transport (RCT), a process whereby excess cell cholesterol is taken up from peripheral cells and processed in HDL particles, and is later delivered to the liver for further metabolism and bile excretion. We have previously demonstrated that P2Y13 receptor is critical for RCT and that intravenous bolus injection of cangrelor (AR-C69931MX), a partial agonist of P2Y13 receptor, can stimulate hepatic HDL uptake and subsequent lipid biliary secretion without any change in plasma lipid levels. In the present study, we investigated the effect of longer-term treatment with cangrelor on lipoprotein metabolism in mice. We observed that continuous delivery of cangrelor at a rate of 35 μg/day/kg body weight for 3 days markedly decreased plasma HDL-cholesterol level, by increasing the clearance of HDL particles by the liver. These effects were correlated to an increase in the rate of biliary bile acid secretion. An increased expression of SREBP-regulated genes of cholesterol metabolism was also observed without any change of hepatic lipid levels as compared to non-treated mice. Thus, 3-day cangrelor treatment markedly increases the flux of HDL-cholesterol from the plasma to the liver for bile acid secretion. Taken together our results suggest that P2Y13 appears a promising target for therapeutic intervention aimed at preventing or reducing cardiovascular risk.  相似文献   

7.
Insulin resistance plays a central role in the development of the metabolic syndrome, but how it relates to cardiovascular disease remains controversial. Liver insulin receptor knockout (LIRKO) mice have pure hepatic insulin resistance. On a standard chow diet, LIRKO mice have a proatherogenic lipoprotein profile with reduced high-density lipoprotein (HDL) cholesterol and very low-density lipoprotein (VLDL) particles that are markedly enriched in cholesterol. This is due to increased secretion and decreased clearance of apolipoprotein B-containing lipoproteins, coupled with decreased triglyceride secretion secondary to increased expression of Pgc-1 beta (Ppargc-1b), which promotes VLDL secretion, but decreased expression of Srebp-1c (Srebf1), Srebp-2 (Srebf2), and their targets, the lipogenic enzymes and the LDL receptor. Within 12 weeks on an atherogenic diet, LIRKO mice show marked hypercholesterolemia, and 100% of LIRKO mice, but 0% of controls, develop severe atherosclerosis. Thus, insulin resistance at the level of the liver is sufficient to produce the dyslipidemia and increased risk of atherosclerosis associated with the metabolic syndrome.  相似文献   

8.
9.
Endothelial lipase (EL) influences high density lipoprotein (HDL) metabolism in vivo and mediates bridging and uptake of HDL particles independent of its lipolytic activity in vitro. To determine whether EL has a nonlipolytic ligand function in HDL metabolism in vivo, 1 x 1011 particles of a recombinant adenovirus encoding human EL (AdEL), catalytically inactive human EL (AdELS149A), or control (Adnull) were injected into wild-type, apoA-I transgenic, and hepatic lipase knockout mice. ELS149A protein was expressed at higher levels than wild-type EL. EL and ELS149A protein were both substantially increased in the postheparin plasma compared with preheparin, indicating that both the wild-type and mutant EL were bound to cell-surface heparan sulfate proteoglycans. Overexpression of wild-type EL was associated with a significantly increased postheparin-plasma phospholipase activity and dramatically decreased levels of total cholesterol, HDL cholesterol, phospholipids, and apoA-I. Injection of AdELS149A did not result in increased phospholipase activity confirming that ELS149A was catalytically inactive. Expression of ELS149A did not decrease lipid or apoA-I levels in wild-type and apoA-I transgenic mice yet led to an intermediate reduction of total cholesterol, HDL cholesterol, and phospholipids in hepatic lipase-deficient mice compared with control and EL-expressing mice. Our study demonstrates for the first time that EL has both a lipolytic and nonlipolytic function in HDL metabolism in vivo. Lipolytic activity of EL, however, seems to be most important for its effects on systemic HDL metabolism.  相似文献   

10.
Scavenger receptor class B type I (SR-BI) delivers cholesterol ester from HDL to cells via a selective uptake mechanism, whereby lipid is transferred from the core of the particle without concomitant degradation of the protein moiety. The precise metabolic fate of HDL particles after selective lipid uptake is not known. To characterize SR-BI-mediated HDL processing in vivo, we expressed high levels of this receptor in livers of apoA-I(-/-) mice by adenoviral vector gene transfer, and then injected the mice with a bolus of human HDL(2) traced with (125)I-dilactitol tyramine. HDL recovered from apoA-I(-/-) mice over-expressing SR-BI was significantly smaller than HDL recovered from control mice as measured by non-denaturing gel electrophoresis. When injected into C57BL/6 mice, these HDL "remnants" were rapidly converted to HDL(2)-sized lipoprotein particles, and were cleared from the plasma at a rate similar to HDL(2). In assays in cultured cells, HDL remnants did not stimulate ATP-binding cassette transporter A1-dependent cholesterol efflux. When mixed with mouse plasma ex vivo, HDL remnants rapidly converted to larger HDL particles. These studies identify a previously ill-defined pathway in HDL metabolism, whereby SR-BI generates small, dense HDL particles that are rapidly remodeled in plasma. This remodeling pathway may represent a process that is important in determining the rate of apoA-I catabolism and HDL-mediated reverse cholesterol transport.  相似文献   

11.
Obese mice without leptin (ob/ob) or the leptin receptor (db/db) have increased plasma HDL levels and accumulate a unique lipoprotein referred to as LDL/HDL1. To determine the role of apolipoprotein A-I (apoA-I) in the formation and accumulation of LDL/HDL1, both ob/ob and db/db mice were crossed onto an apoA-I-deficient (apoA-I(-/-)) background. Even though the obese apoA-I(-/-) mice had an expected dramatic decrease in HDL levels, the LDL/HDL1 particle persisted. The cholesterol in this lipoprotein range was associated with both alpha- and beta-migrating particles, confirming the presence of small LDLs and large HDLs. Moreover, in the obese apoA-I(-/-) mice, LDL particles were smaller and HDLs were more negatively charged and enriched in apoE compared with controls. This LDL/HDL1 particle was rapidly remodeled to the size of normal HDL after injection into C57BL/6 mice, but it was not catabolized in obese apoA-I(-/-) mice even though plasma hepatic lipase (HL) activity was increased significantly. The finding of decreased hepatic scavenger receptor class B type I (SR-BI) protein levels may explain the persistence of LDL/HDL1 in obese apoA-I(-/-) mice. Our studies suggest that the maturation and removal of large HDLs depends on the integrity of a functional axis of apoA-I, HL, and SR-BI. Moreover, the presence of large HDLs without apoA-I provides evidence for an apoA-I-independent pathway of cholesterol efflux, possibly sustained by apoE.  相似文献   

12.
We have shown mouse to be an useful animal model for studies on the estrogen-mediated synthesis and secretion of lipoproteins since, unlike in rats, low density lipoprotein receptors are not upregulated in mice [3]. This results into the elevation of plasma levels of apolipoprotein (apo) B and apoE, and lowering of apoA-I-containing particles. The mechanisms of apoB and apoE elevation by estrogen have been elucidated [6], but the mechanism of lowering of plasma levels of HDL is still not known. Among other factors, apoA-I, cholesterol ester transfer protein (CETP), scavenger receptor B1 (SR-B1), and hepatic lipase are potential candidates that modulate plasma levels of HDL. Since estrogen treatment increased hepatic apoA-I mRNA and apoA-I synthesis, and mouse express undetectable levels of CETP, we tested the hypothesis that estradiol-mediated lowering of HDL in mice may occur through modulation of hepatic lipase (HL). Four mouse strains (C57L, C57BL, BALB, C3H) were administered supraphysiological doses of estradiol, and plasma levels of HDL as well as HL mRNA were quantitated. In all 4 strains estradiol decreased plasma levels of HDL by 30%, and increased HL mRNA 2–3 fold. In a separate experiment groups of male C57BL mouse were castrated or sham-operated, and low and high doses of estradiol administered. We found 1.4–2.5 fold elevation of HL mRNA with concomitant lowering of HDL levels. Ten other mouse strains examined also showed estradiol-induced elevation of HL mRNA, but the extent of elevation was found to be strain-specific. Based on these studies, we conclude that hepatic lipase is an important determinant of plasma levels of HDL and that HL mRNA is modulated by estrogen which in turn may participate in the lowering of plasma levels of HDL.  相似文献   

13.
Cholesteryl ester transfer protein (CETP) promotes reverse cholesterol transport via exchange of cholesteryl ester and triglyceride among lipoproteins. Here, we focused on HDL metabolism during inhibition of CETP expression by using CETP antisense oligodeoxynucleotides (ODNs) in HepG2 cells. CETP secretion was decreased by 70% in mRNA levels and by 52% in mass 20 h after ODNs against CETP were delivered to HepG2 cells. Furthermore, as a consequence of the downregulation of CETP, the expression of scavenger receptor class B type I (SR-BI), an HDL receptor, was also reduced by approximately 50% in mRNA and protein levels, whereas the apolipoprotein A-I (apoA-I) expression and secretion were increased by 30 and 92%, respectively. In a functional study, the selective uptake of (125)I-[(14)C]cholesteryl oleate-labeled HDL(3) was decreased. Cholesterol efflux to apoA-I and HDL(3) was significantly increased by 88 and 37%, respectively. Moreover, the CE levels in cells after antisense treatment were elevated by 20%, which was related to the about twofold increase of cholesterol esterification and increased acyl-CoA:cholesterol acyltransferase 1 mRNA levels. Taken together, these findings suggest that although acute suppression of CETP expression leads to an elevation in cellular cholesterol stores, apoA-I secretion, and cellular cholesterol efflux to apoA-I, the return of HDL-CE to hepatocytes via an SR-BI pathway was inhibited in vitro. Thus antisense inhibition of hepatic CETP expression manifests dual effects: namely, increased formation of HDL and suppression of catabolism of HDL-CE, probably via the SR-BI pathway.  相似文献   

14.
Pregnane X receptor (PXR) agonism has been shown to affect multiple steps in both the synthesis and catabolism of HDL, but its integrated effect on HDL metabolism in vivo remains unclear. The aim of this study was to evaluate the net effect of PXR agonism on HDL metabolism in ApoE?3-Leiden (E3L) and E3L.CETP mice, well-established models for human-like lipoprotein metabolism. Female mice were fed a diet with increasing amounts of the potent PXR agonist 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN). In E3L and E3L.CETP mice, PCN increased liver lipids as well as plasma cholesterol and triglycerides. However, whereas PCN increased cholesterol contained in large HDL-1 particles in E3L mice, it dose-dependently decreased HDL-cholesterol in E3L.CETP mice, indicating that CETP expression dominates the effect of PCN on HDL metabolism. Analysis of the hepatic expression of genes involved in HDL metabolism showed that PCN decreased expression of genes involved in HDL synthesis (Abca1, Apoa1), maturation (Lcat, Pltp) and clearance (Sr-b1). The HDL-increasing effect of PCN, observed in E3L mice, is likely caused by a marked decrease in hepatic SR-BI protein expression, and completely reversed by CETP expression. We conclude that chronic PXR agonism dose-dependently reduces plasma HDL-cholesterol in the presence of CETP.  相似文献   

15.
The effects of altered serum 3,3',5-triiodothyronine levels on rat lipoprotein metabolism were examined. Daily injections of the hormone (50 micrograms/100 g body mass) over a period of six days led to an increase of 6.4-fold in the hepatic mRNA level for apolipoprotein(apo)A-I, and a 21% increase in serum apoA-I levels. 12h after a single injection of 3,3',5-triiodothyronine the rate of [14C]leucine incorporation into apoA-I increased 2.1 fold. Conversely, in hypothyroid rats there was a decrease in hepatic mRNA levels for apoA-I and a decreased rate of [14C]leucine incorporation into apoA-I. The increase in hepatic apoA-I mRNA levels following 3,3',5-triiodothyronine treatment occurred prior to significant changes in serum triacylglycerol levels. High-density lipoprotein (HDL) particles isolated from the serum of hyperthyroid rats were smaller and enriched in apoA-I compared to apoA-IV and apoE. Similar changes in HDL composition were observed following in vitro incubations of normal rat serum with purified rat apoA-I. The results suggest that during altered thyroid status, changes in serum HDL size and composition occur in association with significant changes in apoA-I gene expression.  相似文献   

16.
Hepatic proprotein convertases modulate HDL metabolism   总被引:3,自引:0,他引:3  
The risk of atherosclerosis is inversely associated with plasma levels of high-density lipoprotein cholesterol (HDL-C). However, HDL metabolism is incompletely understood, and there are few effective approaches to modulate HDL-C levels. Here we show that inhibition in the liver of the classical proprotein convertases (PCs), but not the atypical PCs S1P and PCSK9, decreases plasma HDL-C levels. This metabolic effect of hepatic PCs is critically dependent on expression of endothelial lipase (EL), an enzyme that directly hydrolyzes HDL phospholipids and promotes its catabolism. Hepatic PCs reduce EL function through direct inactivating cleavage of EL as well as through activating cleavage of angiopoietin-like protein 3 (ANGPTL3), an endogenous inhibitor of EL. Thus, inhibition of hepatic PCs results in increased EL activity, leading to reduced HDL-C as well as impaired reverse cholesterol transport. The hepatic PC-ANGPTL3-EL-HDL pathway is therefore a novel mechanism controlling HDL metabolism and cholesterol homeostasis.  相似文献   

17.
Isolated livers from rhesus monkeys (Macaca mulatta) were perfused in order to asses the nature of newly synthesized hepatic lipoprotein. Perfusate containing [3H]leucine was recirculated for 1.5 hr, followed by an additional 2.5-hr perfusion with fresh perfusate. Equilibrium density gradient ultracentrifugation clearly separated VLDL from LDL. The apoprotein composition of VLDL secreted by the liver was similar to that of serum VLDL. The perfusate LDL contained some poorly radiolabeled, apoB-rich material, which appeared to be contaminating serum LDL. There was also some material of an LDL-like density, which was rich in radiolabeled apoE. Rate zonal density gradient ultracentrifugation fractionated HDL. All perfusate HDL fractions had a decreased cholesteryl ester/unesterified cholesterol ratio, compared to serum HDL. Serum HDL distributed in one symmetric peak near the middle of the gradient, with coincident peaks of apoA-I and apoA-II. The least dense fractions of the perfusate gradient were rich in radiolabeled apoE. The middle of the perfusate gradient contained particles rich in radiolabeled apoA-I and apoA-II. The peak of apoA-I was offset from the apoA-II peak towards the denser end of the gradient. The dense end of the HDL gradient contained lipoprotein-free apoA-I, apoE, and small amounts of apoA-II, probably resulting from the relative instability of nascent lipoprotein compared to serum lipoprotein. Perfusate HDL apoA-I isoforms were more basic than serum apoA-I isoforms. Preliminary experiments, using noncentrifugal methods, suggest that some hepatic apoA-I is secreted in a lipoprotein-free form. In conclusion, the isolated rhesus monkey liver produces VLDL similar to serum VLDL, but produces LDL and HDL which differ in several important aspects from serum LDL and HDL.  相似文献   

18.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   

19.
Patients homozygous for Tangier disease have a near absence of plasma HDL as a result of mutations in ABCA1 and hypercatabolize normal HDL particles. To determine the relationship between ABCA1 expression and HDL catabolism, we investigated intravascular remodeling, plasma clearance, and organ-specific uptake of HDL in mice expressing the human apolipoprotein A-I (apoA-I) transgene in the Abca1 knockout background. Small HDL particles (7.5 nm), radiolabeled with (125)I-tyramine cellobiose, were injected into recipient mice to quantify plasma turnover and the organ uptake of tracer. Small HDL tracer was remodeled to 8.2 nm diameter particles within 5 min in human apolipoprotein A-I transgenic (hA-I(Tg)) mice (control) and knockout mice. Decay of tracer from plasma was 1.6-fold more rapid in knockout mice (P < 0.05) and kidney uptake was twice that of controls, with no difference in liver uptake. We also observed 2-fold greater hepatic expression of ABCA1 protein in hA-I(Tg) mice compared with nontransgenic mice, suggesting that overexpression of human apoA-I stabilized hepatic ABCA1 protein in vivo. We conclude that ABCA1 is not required for in vivo remodeling of small HDLs to larger HDL subfractions and that the hypercatabolism of normal HDL particles in knockout mice is attributable to a selective catabolism of HDL apoA-I by the kidney.  相似文献   

20.
To ascertain the mechanisms underlying the hypoalphalipoproteinemia present in mice overexpressing human apolipoprotein A-II (apoA-II) (line 11.1), radiolabeled HDL or apoA-I were injected into mice. Fractional catabolic rate of [(3)H]cholesteryl oleoyl ether HDL ([(3)H]HDL) was 2-fold increased in 11.1 transgenic mice compared with control mice and this was concomitant with increased radioactivity in liver, gonads, and adrenals. However, scavenger receptor class B, type I (SR-BI) was increased only in adrenals. [(3)H]HDL of 11.1 transgenic mice presented greater binding but decreased uptake compared with control mice when Chinese hamster ovary cells transfected with SR-BI were used, thereby pointing to unknown but SR-BI-independent mechanisms as being responsible for the increased (3)H-radioactivity seen in liver and gonads. Synthesis rate (SR) of plasma [(3)H]HDL was 2-fold decreased in 11.1 transgenic mice. Mouse (125)I-apoA-I was 2-fold more rapidly catabolized (mainly by the kidney) in transgenic mice. Mouse apoA-I displacement from HDL by the addition of isolated human apoA-II was reproduced ex vivo; thus, this mechanism may be involved in the increased renal catabolism of apoA-I. ApoA-I SR was 2-fold decreased in 11.1 transgenic mice and this was concomitant with a 2.3-fold decrease in hepatic apoA-I mRNA abundance. Our findings show that multiple mechanisms are involved in the HDL deficiency presented by mice overexpressing human apoA-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号