首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The effects of aminazine (0.25 mM), phthoracyzine (0.5 mM), trifluperidole (0.5 mM) and imipramine (0.5 mM) on GABA release from rat brain synaptosomes depolarized with K+ (50 mM) were investigated. Incubation of synaptosomes with aminazine led to a 2-fold and that with phthoracyzine, trifluperidole and imipramine to a 1.5-fold increase in GABA release from synaptosomes as compared with its basic level. The raising of K+ in the incubation medium to 50 mM brought about a 2-fold augmentation of GABA release. Exposure of synaptosomes to drugs and a higher K+ concentration at a time did not change GABA release as compared to its basic level. Introduction into the incubation medium of the Ga-ionophore A23187 together with 50 mM K+ and trifluperidole or with K+ and imipramine led to the same increase in GABA release from synaptosomes as that produced by the psychotropic drugs as regards native synaptosomes. It is assumed that the lack of the influence of the psychotropic drugs under study of GABA release from synaptosomes depolarized with K+ is caused by blockade of synaptic membrane conductibility for Ca2+.  相似文献   

5.
6.
7.
Gamma-aminobutyric acid (GABA), glutamate decarboxylase and GABA-transaminase were identified in the nematode Caenorhabditis elegans. The concentration of GABA in C. elegans (0.14 micrograms/mg protein) is approximately 10-fold lower than the concentration of GABA in rat brain. Glutamate decarboxylase and GABA-transaminase, the GABA anabolic and catabolic enzymes, are also present in C. elegans. Crude membrane fractions were prepared from C. elegans and used to study specific [3H] GABA binding sites. GABA binds to C. elegans membranes with high affinity (37 nM) and low capacity (Bmax = 2.25 pmol/mg protein). Muscimol is a competitive inhibitor of specific GABA binding with a KI value of 120 nM. None of the other GABA agonists or antagonists inhibited greater than 40% of the specific GABA binding at concentrations up to 10(-4)M. Thirteen spider venoms were examined as possible GABA agonists or antagonists, the venom from Calilena agelenidae inhibits specific GABA binding with a KI value of 6 nl/ml. These results suggest that GABA has a physiological role as a neurotransmitter in C. elegans.  相似文献   

8.
9.
In the present study we report the presence of acetylcholinesterase activity and gamma-aminobutyric acid binding sites in crude extracts of Dicrocoelium dendriticum. This indirectly demonstrates the presence of acetylcholine and GABA. The presence of these neurotransmitters could indicate the existence of two systems implicated in the neurotransmission of the Digenea.  相似文献   

10.
Abscisic acid (ABA, 1), a plant hormone, has electrophilicity derived almost entirely from the side-chain, 3-methylpenta-2,4-dienoic acid. The electrochemical property of ABA was investigated by analysis of its cathodic reaction. ABA methyl ester (1-Me) was reduced at a peak potential of −1.6 V to give a unique and unstable bicyclic compound (5-Me) as a major product at pH 3 and 7. This finding showed that an electron was absorbed in the conjugated dienecarboxyl group, and that C-5 with a high electron density attacked C-2′ through an intramolecular nucleophilic addition. At pH 10, in addition to 5-Me, a compound 4-Me was formed by isomerization of 5-Me under alkaline conditions. For a cathodic reaction of ABA at pH 3 and 7, compound 5 was a major product as well as in the case of ABA methyl ester. However, at pH 10, a dimer (6) with an epoxy group, 1′-deoxy-ABA (7) and other compounds were formed instead of compounds 4 and 5. Compounds 4 and 5 were biologically inactive, suggesting the importance of the electrophilic side-chain of ABA for biological activity.  相似文献   

11.
The chemiluminescent response of conjugated linoleic acid isomers (CLAs), linoleic acid (LA) and methyl linoleate (LAME) against the prooxidant t-butyl hydroperoxide (tBHP) was analyzed. The c9, t11-CLA and t10, c12-CLA isomers showed significant photoemission at the highest concentration used, while photoemission was not detected at any concentration of LA and LAME analyzed. These results show that CLAs are more susceptible to peroxidation than LA and LAME. Likewise, the effect of CLA, LA and LAME on lipid peroxidation of triglycerides rich in C20:5 omega3 and C22:6 omega3 (Tg omega3-PUFAs) was investigated. For that, chemiluminescence produced by triglycerides in the presence of tBHP, previously incubated with different concentrations of CLAs, LA and LAME (from 1 to 200 mM) was registered for 60 min. Triglycerides in the presence of t-BHP produced a peak of light emission (3151+/-134 RLUs) 5 min after addition. CLAs produced significant inhibition on photoemission, t10, c12-CLA being more effective than the c9, t11-CLA isomer. LA and LAME did not have an effect on lipid peroxidation of Tg omega3-PUFAs. CLA isomers, LA and LAME were also investigated for free radical scavenging properties against the stable radical (DPPH()). Both CLA isomers reacted and quenched DPPH() at all tested levels (from 5 to 25 mM), while LA and LAME did not show radical quenching activity even at the highest concentration tested. These data indicate that CLAs would provide protection against free radicals, but LA and LAME cannot.  相似文献   

12.
Gamma-aminobutyric acid (GABA), GABA synthesizing enzyme and GABA binding sites were measured in rat ovaries. The concentration of GABA in the ovary (0.56 μg/mg protein) was less than that in the brain (1.2–3.4 μg/mg protein), but was six-fold higher than any other non-neuronal tissue examined. Glutamate decarboxylase, the GABA synthesizing enzyme was also found in high concentrations in whole ovarian homogenate but not in enriched ovarian granulosa cells, testis, anterior pituitary or muscles. Furthermore, high affinity (Kd = 15–21 nM), specific GABA binding sites were identified in the ovaries by specific [3H]muscimol binding and the majority of GABA binding sites were associated with the granulosa cells. These data suggest a possible role of GABA in the regulation of ovarian functions.  相似文献   

13.
《Trends in plant science》1999,4(11):446-452
Gamma-aminobutyric acid (GABA), a four-carbon non-protein amino acid, is a significant component of the free amino acid pool in most prokaryotic and eukaryotic organisms. In plants, stress initiates a signal-transduction pathway, in which increased cytosolic Ca2+ activates Ca2+/calmodulin-dependent glutamate decarboxylase activity and GABA synthesis. Elevated H+ and substrate levels can also stimulate glutamate decarboxylase activity. GABA accumulation probably is mediated primarily by glutamate decarboxylase. However, more information is needed concerning the control of the catabolic mitochondrial enzymes (GABA transaminase and succinic semialdehyde dehydrogenase) and the intracellular and intercellular transport of GABA. Experimental evidence supports the involvement of GABA synthesis in pH regulation, nitrogen storage, plant development and defence, as well as a compatible osmolyte and an alternative pathway for glutamate utilization. There is a need to identify the genes of enzymes involved in GABA metabolism, and to generate mutants with which to elucidate the physiological function(s) of GABA in plants.  相似文献   

14.
There are considered the characteristic features of thrombin functional activity in central and peripheral nervous system. A family of specialized membrane receptors--so called PARs (Proteinase Activated Receptors) and their presence in several parts of CNS is described. The concentration- and PAR-dependent neuroprotecting and injuring effects of thrombin in CNS are compared. The literature and original authors data are presented demonstrating the presence of PARs in peripheral nervous system and the ability of endogenous and exogenous thrombin to influence the regeneration of peripheral nerves. The perspectives of experimental approach are discussed, when the exogenous thrombin or peptide-agonists of PARs are used to accelerate the nerve regeneration in vivo.  相似文献   

15.
16.
17.
18.
Experiments on isolated strips of the rabbit uterus showed the ability of GABA, GABAA-receptor agonist (diazepam) and GABAB-receptor antagonist (phenibut) to inhibit uterine contractility. GABAA-receptor antagonist (bicuculline) had a stimulating effect on contractility. It is assumed that GABA-ergic system plays an important role in the regulation of functional inhibition of contractile activity in the rabbit uterus, with GABA agonists regarded as potential gravidoprotectors in uterine hyperactivity or threatening miscarriage.  相似文献   

19.
It is established that GABA interacts with tyrosine hydroxylase through the allosteric site which is not identical to sites of tyrosine, DOPA, pterin cofactor, dopamine binding. This interaction is very significant in the GABA influence on the regulation of the tyrosine hydroxylase activity by presynaptic receptors. GABA is supposed to be able to cause dissociation of oligomeric forms of tyrosine hydroxylase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号