首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
betam, a muscle-specific protein, is structurally closely related to the X,K-ATPase beta subunits, but its intrinsic function is not known. In this study, we have expressed betam in Xenopus oocytes and have investigated its biosynthesis and processing as well as its putative role as a chaperone of X,K-ATPase alpha subunits, as a regulator of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), or as a Ca(2+)-sensing protein. Our results show that betam is stably expressed in the endoplasmic reticulum (ER) in its core glycosylated, partially trimmed form. Both full-length betam, initiated at Met(1), and short betam species, initiated at Met(89), are detected in in vitro translations as well as in Xenopus oocytes. betam cannot associate with and stabilize Na,K-ATPase (NK), or gastric and nongastric H,K-ATPase (HK) alpha isoforms. betam neither assembles stably with SERCA nor is its trypsin sensitivity or electrophoretic mobility influenced by Ca(2+). A mutant, in which the distinctive Glu-rich regions in the betam N-terminus are deleted, remains stably expressed in the ER and can associate with, but not stabilize X,K-ATPase alpha subunits. On the other hand, a chimera in which the ectodomain of betam is replaced with that of beta1 NK associates efficiently with alpha NK isoforms and produces functional Na,K-pumps at the plasma membrane. In conclusion, our results indicate that betam exhibits a cellular location and functional role clearly distinct from the typical X,K-ATPase beta subunits.  相似文献   

2.
Na,K-ATPase and H,K-ATPase are the only members of the P-type ATPases in which a glycosylated beta-subunit is part of the purified active enzyme. In this study, we have followed the synthesis and the posttranslational processing of the beta-subunit of H,K-ATPase (beta HK) in Xenopus oocytes injected with beta HK cRNA and have tested whether it can act as a surrogate for the beta-subunit of Na,K-ATPase (beta NaK) to support the functional expression of Na,K-pumps. In Xenopus oocytes, beta HK is processed from an Endo H-sensitive 51-kDa coreglycosylated form to an Endo H-resistant 71-kDa fully glycosylated form. Similar to beta NaK, beta HK can stabilize and increase the trypsin resistance of alpha-subunits of Na,K-ATPase (alpha NaK). Finally, expression of beta HK together with alpha NaK leads to an increased number of ouabain binding sites at the plasma membrane accompanied by an increased Rb+ uptake and Na,K-pump current. Our data suggest that beta HK, similar to beta NaK, can assemble to alpha NaK, support the structural maturation and the intracellular transport of catalytic alpha NaK, and ultimately form active alpha NaK-beta HK complexes with Na,K-pump transport properties.  相似文献   

3.
In oligomeric P2-ATPases such as Na,K- and H,K-ATPases, beta subunits play a fundamental role in the structural and functional maturation of the catalytic alpha subunit. In the present study we performed a tryptophan scanning analysis on the transmembrane alpha-helix of the Na,K-ATPase beta1 subunit to investigate its role in the stabilization of the alpha subunit, the endoplasmic reticulum exit of alpha-beta complexes, and the acquisition of functional properties of the Na,K-ATPase. Single or multiple tryptophan substitutions in the beta subunits transmembrane domain had no significant effect on the structural maturation of alpha subunits expressed in Xenopus oocytes nor on the level of expression of functional Na,K pumps at the cell surface. Furthermore, tryptophan substitutions in regions of the transmembrane alpha-helix containing two GXXXG transmembrane helix interaction motifs or a cysteine residue, which can be cross-linked to transmembrane helix M8 of the alpha subunit, had no effect on the apparent K(+) affinity of Na,K-ATPase. On the other hand, substitutions by tryptophan, serine, alanine, or cysteine, but not by phenylalanine of two highly conserved tyrosine residues, Tyr(40) and Tyr(44), on another face of the transmembrane helix, perturb the transport kinetics of Na,K pumps in an additive way. These results indicate that at least two faces of the beta subunits transmembrane helix contribute to inter- or intrasubunit interactions and that two tyrosine residues aligned in the beta subunits transmembrane alpha-helix are determinants of intrinsic transport characteristics of Na,K-ATPase.  相似文献   

4.
Na,K- and H,K-ATPase (X,K-ATPase) alpha subunits need association with a beta subunit for their maturation, but the authentic beta subunit of nongastric H,K-ATPase alpha subunits has not been identified. To better define alpha-beta interactions in these ATPases, we coexpressed human, nongastric H,K-ATPase alpha (AL1) and Na,K-ATPase alpha1 (alpha1NK) as well as AL1-alpha1 and alpha1-AL1 chimeras, which contain exchanged M9 and M10 membrane domains, together with each of the known beta subunits in Xenopus oocytes and followed their resistance to cellular and proteolytic degradation and their ER exit. We show that all beta subunits (gastric betaHK, beta1NK, beta2NK, beta3NK, or Bufo bladder beta) can associate efficiently with alpha1NK, but only gastric betaHK, beta2NK, and Bufo bladder beta can form stably expressed AL1-beta complexes that can leave the ER. The trypsin resistance and the forces of subunit interaction, probed by detergent resistance, are lower for AL1-beta complexes than for alpha1NK-beta complexes. Furthermore, chimeric alpha1-AL1 can be stabilized by beta subunits, but alpha1-AL1-gastric betaHK complexes are retained in the ER. On the other hand, chimeric AL1-alpha1 cannot be stabilized by any beta subunit. In conclusion, these results indicate that (1) none of the known beta subunits is the real partner subunit of AL1 but an as yet unidentified, authentic beta should have structural features resembling gastric betaHK, beta2NK, or Bufo bladder beta and (2) beta-mediated maturation of alpha subunits is a multistep process which depends on the membrane insertion properties of alpha subunits as well as on several discrete events of intersubunit interactions.  相似文献   

5.
Modulation of the Na,K-pump function by beta subunit isoforms   总被引:4,自引:0,他引:4       下载免费PDF全文
To study the role of the Na,K-ATPase beta subunit in the ion transport activity, we have coexpressed the Bufo alpha 1 subunit (alpha 1) with three different isotypes of beta subunits, the Bufo Na,K-ATPase beta 1 (beta 1NaK) or beta 3 (beta 3NaK) subunit or the beta subunit of the rabbit gastric H,K-ATPase (beta HK), by cRNA injection in Xenopus oocyte. We studied the K+ activation kinetics by measuring the Na,K- pump current induced by external K+ under voltage clamp conditions. The endogenous oocyte Na,K-ATPase was selectively inhibited, taking advantage of the large difference in ouabain sensitivity between Xenopus and Bufo Na,K pumps. The K+ half-activation constant (K1/2) was higher in the alpha 1 beta 3NaK than in the alpha 1 beta 1NaK groups in the presence of external Na+, but there was no significant difference in the absence of external Na+. Association of alpha 1 and beta HK subunits produced active Na,K pumps with a much lower apparent affinity for K+ both in the presence and in the absence of external Na+. The voltage dependence of the K1/2 for external K+ was similar with the three beta subunits. Our results indicate that the beta subunit has a significant influence on the ion transport activity of the Na,K pump. The small structural differences between the beta 1NaK and beta 3NaK subunits results in a difference of the apparent affinity for K+ that is measurable only in the presence of external Na+, and thus appears not to be directly related to the K+ binding site. In contrast, association of an alpha 1 subunit with a beta HK subunit results in a Na,K pump in which the K+ binding or translocating mechanisms are altered since the apparent affinity for external K+ is affected even in the absence of external Na+.  相似文献   

6.
Synthesis and assembly of most oligomeric plasma membrane proteins occurs in the ER. However, the role the ER plays in oligomerization is unknown. We have previously demonstrated that unassociated alpha and beta subunits of the Na,K-ATPase are targeted to the plasma membrane when individually expressed in baculovirus-infected Sf-9 cells. This unique property allows us to determine if assembly of these two polypeptides is restricted to the ER, or if it can also occur at the plasma membrane. To investigate the assembly of the Na,K-ATPase we have taken advantage of the ability of baculovirus-infected cells to fuse. Lowering the extracellular pH of the infected cells triggers an endogenously expressed viral protein to initiate plasma membrane fusion. When individual Sf-9 cells expressing either the Na,K-ATPase alpha or beta subunits are plated together and subjected to a mild acidic shock, they form large syncytia. In the newly continuous plasma membrane the separate alpha and beta polypeptides associate and assemble into functional Na,K-ATPase molecules. However, a hybrid ATPase molecule consisting of a Na,K-ATPase alpha subunit and a H,K- ATPase beta subunit, which efficiently assembles in the ER of coinfected cells, does not assemble at the plasma membrane of fused cells. When cells expressing the Na,K-ATPase alpha subunit are fused to cells coexpressing the Na,K-ATPase beta subunit and the H,K-ATPase beta subunit, the Na,K-ATPase alpha subunit selectively assembles with the Na,K-ATPase beta subunit. However, when cells are coinfected and expressing all three polypeptides, the Na,K-ATPase alpha subunit assembles with both beta subunits in the ER, in what appears to be a random fashion. These experiments demonstrate that assembly between some polypeptides is restricted to the ER, and suggests that the ability of the Na,K-ATPase alpha and beta subunits to leave the ER and assemble at the plasma membrane may represent a novel mechanism of regulation of activity.  相似文献   

7.
The minimal functional Na,K-ATPase unit is composed of a catalytic alpha-subunit and a glycosylated beta-subunit. So far three putative beta-isoforms have been described, but only beta 1-isoforms have been identified clearly as part of a purified active enzyme complex. In this study we provide evidence that a putative beta 3-isoform might be the functional component of Xenopus oocyte Na,K-ATPase. beta 3-isoforms are expressed in the oocyte plasma membrane together with alpha-subunits, but beta 3-isoforms are synthesized to a lesser extent than alpha-subunits. The unassembled oocyte alpha-subunits accumulate in an immature trypsin-sensitive form most likely in the endoplasmic reticulum (ER). Injection of both beta 1- and beta 3-cRNA into oocytes abolishes the transport constraint of the oocyte alpha-subunit, renders it trypsin-resistant, and finally leads to an increased number of functional pumps at the plasma membrane. In addition, beta 3-isoforms as beta 1-isoforms depend on the concomitant synthesis of alpha-subunits to be able to leave the ER and to become fully glycosylated. Finally, alpha-beta 1 and alpha-beta 3 complexes expressed at the plasma membrane appear to have similar transport properties as assessed by ouabain binding, rubidium uptake, and electrophysiological measurements in oocytes coexpressing exogenous alpha 1- and beta 1- or beta 3-isoforms. Thus our data indicate that beta 3-isoforms have functional qualities similar to beta 1-isoforms. They can assemble and impose a structural reorganization to newly synthesized alpha-subunits which permits the exit from the ER and the expression of functional Na,K-pumps at the plasma membrane.  相似文献   

8.
The H,K-adenosine triphosphatase (ATPase) of gastric parietal cells is targeted to a regulated membrane compartment that fuses with the apical plasma membrane in response to secretagogue stimulation. Previous work has demonstrated that the alpha subunit of the H, K-ATPase encodes localization information responsible for this pump's apical distribution, whereas the beta subunit carries the signal responsible for the cessation of acid secretion through the retrieval of the pump from the surface to the regulated intracellular compartment. By analyzing the sorting behaviors of a number of chimeric pumps composed of complementary portions of the H, K-ATPase alpha subunit and the highly homologous Na,K-ATPase alpha subunit, we have identified a portion of the gastric H,K-ATPase, which is sufficient to redirect the normally basolateral Na,K-ATPase to the apical surface in transfected epithelial cells. This motif resides within the fourth of the H,K-ATPase alpha subunit's ten predicted transmembrane domains. Although interactions with glycosphingolipid-rich membrane domains have been proposed to play an important role in the targeting of several apical membrane proteins, the apically located chimeras are not found in detergent-insoluble complexes, which are typically enriched in glycosphingolipids. Furthermore, a chimera incorporating the Na, K-ATPase alpha subunit fourth transmembrane domain is apically targeted when both of its flanking sequences derive from H,K-ATPase sequence. These results provide the identification of a defined apical localization signal in a polytopic membrane transport protein, and suggest that this signal functions through conformational interactions between the fourth transmembrane spanning segment and its surrounding sequence domains.  相似文献   

9.
N-terminal deletion mutants of Na,K-ATPase alpha 1 isoforms initiating translation at Met34 (alpha 1T1) or at Met43 (alpha 1T2) were expressed in X. laevis oocytes. Compared to beta 3 cRNA injected controls, the co-expression of alpha 1wt, alpha 1T1, alpha 1T2 with beta 3 subunits results in a 2- to 3-fold increase of ouabain binding sites, parallelled by a concomitant increase in Na,K-pump current. The apparent K1/2 for potassium activation of the alpha 1T2/beta 3 Na,K-pumps is significantly higher than that of the alpha 1wt/beta 3 or alpha 1T1/beta 3 Na,K-pumps expressed at the cell surface. Total deletion of the lysine-rich N-terminal domain thus allows the expression of active Na,K-pump but with distinct cation transport properties.  相似文献   

10.
《The Journal of cell biology》1996,133(6):1193-1204
Subunit assembly plays an essential role in the maturation of oligomeric proteins. In this study, we have characterized the main structural and functional consequences of the assembly of alpha and beta subunits of Na,K-ATPase. Xenopus oocytes injected with alpha and/or beta cRNA were treated with brefeldin A, which permitted the accumulation of individual subunits or alpha-beta complexes in the ER. Only alpha subunits that are associated with beta subunits become resistant to trypsin digestion and cellular degradation. Similarly, assembly with beta subunits is necessary and probably sufficient for the catalytic alpha subunit to acquire its main functional properties at the level of the ER, namely the ability to adopt different ligand- dependent conformations and to hydrolyze ATP in an Na(+)- and K(+)- dependent, ouabain-inhibitable fashion. Not only the alpha but also the beta subunit undergoes a structural change after assembly, which results in a global increase in its protease resistance. Furthermore, extensive and controlled proteolysis assays on wild-type and NH2- terminally modified beta subunits revealed a K(+)-dependent interaction of the cytoplasmic NH2 terminus of the beta subunit with the alpha subunit, which is likely to be involved in the modulation of the K(+)- activation of the Na,K-pump transport activity. Thus, we conclude that the ER assembly process not only establishes the basic structural interactions between individual subunits, which are required for the maturation of oligomeric proteins, but also distinct, functional interactions, which are involved in the regulation of functional properties of mature proteins.  相似文献   

11.
12.
The molecular nature of determinants that mediate degradation of unassembled, polytopic subunits of oligomeric membrane proteins and their stabilization after partner subunit assembly is largely unknown. Expressing truncated Na,K-ATPase alpha subunits alone or together with beta subunits, we find that in unassembled alpha subunits neither the four N-terminal transmembrane segments acting as efficient alternating signal anchor-stop transfer sequences nor the large, central cytoplasmic loop exposes any degradation signal, whereas poor membrane insertion efficiency of C-terminal membrane domains M5, M7, and M9 coincides with the transient exposure of degradation signals to the cytoplasmic side. beta assembly with an alpha domain comprising at least D902 up to Y910 in the extracytoplasmic M7/M8 loop is necessary to stabilize Na,K-ATPase alpha subunits by favoring M7/M8 membrane pair formation and by protecting a degradation signal recognized from the endoplasmic reticulum (ER) lumenal side. Thus our results suggest that ER degradation of Na,K-ATPase alpha subunits is 1) mainly mediated by folding defects caused by inefficient membrane insertion of certain membrane domains, 2) a multistep process, which involves proteolytic and/or chaperone components acting from the ER lumenal side in addition to cytosolic, proteasome-related factors, and 3) prevented by partner subunit assembly because of direct protection and retrieval of degradation signals from the cytoplasm to the ER lumenal side. These results likely represent a paradigm for the ER quality control of unassembled, polytopic subunits of oligomeric membrane proteins.  相似文献   

13.
Kim M  Jung J  Park CS  Lee K 《Biochimie》2002,84(10):1021-1029
Na,K-ATPase, an alpha, beta heterodimer, is found in the plasma membrane of all animal cells. The alpha chain is believed to have 10 transmembrane regions and a large cytoplasmic domain between the 4th and 5th transmembrane regions (H4-H5). In our previous report, the large (3rd) cytoplasmic domains of the alpha1 and alpha2 isoform were found to interact with cofilin, an actin-modulating protein, by the yeast two-hybrid system. Here we show that cofilin interacts only with the 3rd cytoplasmic domain of the alpha2 subunit but not with the 2nd, 4th, and 5th cytoplasmic domains or the cytoplasmic region of the beta subunit of Na,K-ATPase. We also demonstrate that cofilin interacts with the large cytoplasmic domains of the alpha1, alpha2 and alpha3 isoforms of Na,K-ATPase, but not with those of glucose transporter 1, glucose transporter 4, cystic fibrosis transmembrane conductance regulator and plasma membrane Ca-ATPase. We introduced 10 mutations into the 3rd cytoplasmic domain of Na,K-ATPase to identify the binding sites with cofilin. Eight of these mutants were single amino acid substitutions (R417Q, K470Q, K654G, D672A, K691A, R700G, R700A and D710G) and two were double mutant (K654GR700G and K719AK720A). Analysis of the activity of the reporter gene of these mutants shows that residues D672 and R700 of the 3rd cytoplasmic domain of Na,K-ATPase are involved in the interaction with cofilin.  相似文献   

14.
The meprin alpha subunit, a multidomain metalloproteinase, is synthesized as a type I membrane protein and proteolytically cleaved during biosynthesis in the endoplasmic reticulum (ER), consequently losing its membrane attachment and COOH-terminal domains. The meprin alpha subunit is secreted as a disulfide-linked dimer that forms higher oligomers. By contrast, the evolutionarily related meprin beta subunit retains the COOH-terminal domains during biosynthesis and travels to the plasma membrane as a disulfide-linked integral membrane dimer. Deletion of a unique 56-amino acid inserted domain (the I domain) of meprin alpha prevents COOH-terminal proteolytic processing and results in the retention of this subunit within the ER. To determine elements responsible for this retention versus transport to the cell surface, mutagenesis experiments were performed. Replacement of the meprin alpha transmembrane (alphaT) and cytoplasmic (alphaC) domains with their beta counterparts allowed rapid movement of the alpha subunit to the cell surface. The meprin alphaT and alphaC domains substituted into meprin beta delayed movement of this chimera through the secretory pathway. Replacement of glycines in the meprin alphaT domain GXXXG motif with leucine residues, alanine insertions in the meprin alphaT domain, and mutagenesis of basic residues within the meprin alphaC domain did not enhance the movement of the alpha subunit through the secretory pathway. By contrast, a mutant of meprin alpha (C320AalphaDeltaI) that did not form disulfide-linked dimers or higher order oligomers was transported through the secretory pathway, although more slowly than meprin beta. Taken together, the data indicate that the meprin alphaT and alphaC domains together contain a weak signal for retention within the ER/cis-Golgi compartments that is strengthened by oligomerization.  相似文献   

15.
Several members of the FXYD protein family are tissue-specific regulators of Na,K-ATPase that produce distinct effects on its apparent K(+) and Na(+) affinity. Little is known about the interaction sites between the Na,K-ATPase alpha subunit and FXYD proteins that mediate the efficient association and/or the functional effects of FXYD proteins. In this study, we have analyzed the role of the transmembrane segment TM9 of the Na,K-ATPase alpha subunit in the structural and functional interaction with FXYD2, FXYD4, and FXYD7. Mutational analysis combined with expression in Xenopus oocytes reveals that Phe(956), Glu(960), Leu(964), and Phe(967) in TM9 of the Na,K-ATPase alpha subunit represent one face interacting with the three FXYD proteins. Leu(964) and Phe(967) contribute to the efficient association of FXYD proteins with the Na,K-ATPase alpha subunit, whereas Phe(956) and Glu(960) are essential for the transmission of the functional effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. The relative contribution of Phe(956) and Glu(960) to the K(+) effect differs for different FXYD proteins, probably reflecting the intrinsic differences of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase. In contrast to the effect on the apparent K(+) affinity, Phe(956) and Glu(960) are not involved in the effect of FXYD2 and FXYD4 on the apparent Na(+) affinity of Na,K-ATPase. The mutational analysis is in good agreement with a docking model of the Na,K-ATPase/FXYD7 complex, which also predicts the importance of Phe(956), Glu(960), Leu(964), and Phe(967) in subunit interaction. In conclusion, by using mutational analysis and modeling, we show that TM9 of the Na,K-ATPase alpha subunit exposes one face of the helix that interacts with FXYD proteins and contributes to the stable interaction with FXYD proteins, as well as mediating the effect of FXYD proteins on the apparent K(+) affinity of Na,K-ATPase.  相似文献   

16.
The cardiac glycoside ouabain inhibits Na,K-ATPase by binding to the alpha subunit. In a highly ouabain resistant clone from the MDCK cell line, we have found two alleles of the alpha subunit in which the cysteine, present in the wild-type first transmembrane segment, is replaced by a tyrosine (Y) or a phenylalanine (F). We have studied the kinetics of ouabain inhibition by measuring the current generated by the Na,K-pump in Xenopus oocytes injected with wild-type and mutated alpha 1 and wild-type beta 1 subunit cRNAs. When these mutations, alpha 1C113Y and alpha 1C113F [according to the published sequence [Verrey et al. (1989) Am. J. Physiol., 256, F1034] were introduced in the alpha 1 subunit of the Na,K-ATPase from Xenopus laevis, the inhibition constant (Ki) of ouabain increased greater than 1000-fold compared with wild-type. A more conservative mutation, serine alpha 1C113S did not change the Ki. We observed that the decreased affinity for ouabain was mainly due to a faster dissociation, but probably also to a slower association. Thus we propose that an amino acid residue of the first transmembrane segment located deep in the plasma membrane participates in the structure and the function of the ouabain binding site.  相似文献   

17.
18.
The type IIA voltage-gated sodium Na(+) channel from rat brain is composed of a large, pore-forming alpha subunit and the auxiliary subunits beta1 and beta2. When expressed in Xenopus oocytes, the beta1 subunit modulates the gating properties of the type IIA alpha subunit, resulting in acceleration of both inactivation and recovery from inactivation and in a negative shift in the voltage dependence of fast inactivation. The beta1 subunit is composed of an extracellular domain with a single immunoglobulin-like fold, a single transmembrane segment, and a small intracellular domain. A series of chimeras with exchanges of domains between the Na(+) channel beta1 and beta2 subunits and between beta1 and the structurally related protein myelin P0 were constructed and analyzed by two-microelectrode voltage clamp in Xenopus oocytes. Only chimeras containing the beta1 extracellular domain were capable of beta1-like modulation of Na(+) channel gating. Neither the transmembrane segment nor the intracellular domain was required for modulation, although mutation of Glu(158) within the transmembrane domain altered the voltage dependence of steady-state inactivation. A truncated beta1 subunit was engineered in which the beta1 extracellular domain was fused to a recognition sequence for attachment of a glycosylphosphatidylinositol membrane anchor. The beta1(ec)-glycosylphosphatidylinositol protein fully reproduced modulation of Na(+) channel inactivation and recovery from inactivation by wild-type beta1. Our findings demonstrate that extracellular domain of the beta1 subunit is both necessary and sufficient for the modulation of Na(+) channel gating.  相似文献   

19.
FXYD3 (Mat-8), a new regulator of Na,K-ATPase   总被引:3,自引:0,他引:3       下载免费PDF全文
Four of the seven members of the FXYD protein family have been identified as specific regulators of Na,K-ATPase. In this study, we show that FXYD3, also known as Mat-8, is able to associate with and to modify the transport properties of Na,K-ATPase. In addition to this shared function, FXYD3 displays some uncommon characteristics. First, in contrast to other FXYD proteins, which were shown to be type I membrane proteins, FXYD3 may have a second transmembrane-like domain because of the presence of a noncleavable signal peptide. Second, FXYD3 can associate with Na,K- as well as H,K-ATPases when expressed in Xenopus oocytes. However, in situ (stomach), FXYD3 is associated only with Na,K-ATPase because its expression is restricted to mucous cells in which H,K-ATPase is absent. Coexpressed in Xenopus oocytes, FXYD3 modulates the glycosylation processing of the beta subunit of X,K-ATPase dependent on the presence of the signal peptide. Finally, FXYD3 decreases both the apparent affinity for Na+ and K+ of Na,K-ATPase.  相似文献   

20.
Members of the FXYD family are tissue-specific regulators of the Na,K-ATPase. Here, we have investigated the contribution of amino acids in the transmembrane (TM) domain of FXYD7 to the interaction with Na,K-ATPase. Twenty amino acids of the TM domain were replaced individually by tryptophan, and combined mutations and alanine insertion mutants were constructed. Wild type and mutant FXYD7 were expressed in Xenopus oocytes with Na,K-ATPase. Mutational effects on the stable association with Na,K-ATPase and on the functional regulation of Na,K-ATPase were determined by co-immunoprecipitation and two-electrode voltage clamp techniques, respectively. Most residues important for the structural and functional interaction of FXYD7 are clustered in a face of the TM helix containing the two conserved glycine residues, but others are scattered over two-thirds of the FXYD TM helix. Ile-35, Ile-43, and Ile-44 are only involved in the stable association with Na,K-ATPase. Glu-26, Met-30, and Ile-44 are important for the functional effect and/or the efficient association of FXYD7 with Na,K-ATPase, consistent with the prediction that these amino acids contact TM domain 9 of the alpha subunit (Li, C., Grosdidier, A., Crambert, G., Horisberger, J.-D., Michielin, O., and Geering, K. (2004) J. Biol. Chem. 279, 38895-38902). Several amino acids that are not implicated in the efficient association of FXYD7 with the Na,K-ATPase are specifically involved in the functional effect of FXYD7. Leu-32 and Phe-37 influence the apparent affinity for external K+, whereas Val-28 and Ile-42 are implicated in the apparent affinity for both external K+ and external Na+. These amino acids act in a synergistic way. These results highlight the important structural and functional role of the TM domain of FXYD7 and delineate the determinants that mediate the complex interactions of FXYD7 with Na,K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号