首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attainable levels of signal-to-background ratio (SBR) in Raman spectroscopy of biological samples is limited by the presence of endogenous fluorophores. It is customary to remove the ubiquitous fluorescence background using postacquisition data processing. However, new approaches are needed to reduce background contributions and maximize the fraction of the sensor dynamical range occupied by Raman photons. Time-resolved detection using pulsed lasers and time-gated measurements can be used to address the signal-to-background problem in biological samples by limiting light detection to nonresonant interaction phenomena with relaxation time scales occurring on sub-nanosecond time scales, thereby excluding contributions from resonant phenomena such as fluorescence. A time-gated Fourier-transform spectrometer was assembled using a commercially available interferometer, a single channel single-photon avalanche diode and time tagging electronics. A time gate of 300 ps increased the signal-to-background-ratio of the 1440 cm?1 Raman band from 36% to 69% in an olive oil sample hereby demonstrating the potential of this approach for autofluorescence suppression.   相似文献   

2.
Solvent effects on relaxation dynamics of a keto-carotenoid, siphonaxanthin, were investigated by means of the femtosecond time-resolved fluorescence spectroscopy. After excitation to the S2 state of siphonaxanthin, the S2-->1(n, pi*) internal conversion occurred with a time constant of 30-35 fs, followed by the 1(n, pi*)-->S1 internal conversion in 180-200 fs. Solvent dependence of the internal conversions was small, however intensities of the S1 fluorescence with its lifetime of longer than 10 ps were enhanced in methanol. These were explained by displacement of the potential surfaces and interaction through the hydrogen-bond between the C=O group of siphonaxanthin and solvents.  相似文献   

3.
Wild type green fluorescent protein (wt-GFP) and the variant S65T/H148D each exhibit two absorption bands, A and B, which are associated with the protonated and deprotonated chromophores, respectively. Excitation of either band leads to green emission. In wt-GFP, excitation of band A ( approximately 395 nm) leads to green emission with a rise time of 10-15 ps, due to excited-state proton transfer (ESPT) from the chromophore hydroxyl group to an acceptor. This process produces an anionic excited-state intermediate I* that subsequently emits a green photon. In the variant S65T/H148D, the A band absorbance maximum is red-shifted to approximately 415 nm, and as detailed in the accompanying papers, when the A band is excited, green fluorescence appears with a rise time shorter than the instrument time resolution ( approximately 170 fs). On the basis of the steady-state spectroscopy and high-resolution crystal structures of several variants described herein, it is proposed that in S65T/H148D, the red shift of absorption band A and the ultrafast appearance of green fluorescence upon excitation of band A are due to a very short (相似文献   

4.
The excited state decay kinetics of chromatophores of the purple photosynthetic bacterium Rhodospirillum rubrum have been recorded at 77 K using picosecond absorption difference spectroscopy under strict annihilation free conditions. The kinetics are shown to be strongly detection wavelength dependent. A simultaneous kinetic modeling of these experiments together with earlier fluorescence kinetics by numerical integration of the appropriate master equation is performed. This model, which accounts for the spectral inhomogeneity of the core light-harvesting antenna of photosynthetic purple bacteria, reveals three qualitatively distinct stages of excitation transfer with different time scales. At first a fast transfer to a local energy minimum takes place (approximately 1 ps). This is followed by a much slower transfer between different energy minima (10-30 ps). The third component corresponds to the excitation transfer to the reaction center, which depends on its state (60 and 200 ps for open and closed, respectively) and seems also to be the bottleneck in the overall trapping time. An acceptable correspondence between theoretical and experimental decay kinetics is achieved at 77 K and at room temperature by assuming that the width of the inhomogeneous broadening is 10-15 nm and the mean residence time of the excitation in the antenna lattice site is 2-3 ps.  相似文献   

5.
The ultrafast dynamics of the push-pull azobenzene Disperse Red 1 following photoexcitation at λ(pump) = 475 nm in solution in 2-fluorotoluene have been probed by broadband transient absorption spectroscopy and fluorescence up-conversion spectroscopy. The measured two-dimensional spectro-temporal absorption map features a remarkable "fast" excited-state absorption (ESA) band at λ ≈ 570 nm appearing directly with the excitation laser pulse and showing a sub-100 fs lifetime with a rapid spectral blue-shift. Moreover, its ultrafast decay is paralleled by rising distinctive ESA at other wavelengths. Global fits to the absorption-time profiles using a consecutive kinetic model yielded three time constants, τ(1) = 0.08 ± 0.03 ps, τ(2) = 0.99 ± 0.02 ps, and τ(3) = 6.0 ± 0.1 ps. Fluorescence-time profiles were biexponential with time constants τ(1)' = 0.12 ± 0.06 ps and τ(2)' = 0.70 ± 0.10 ps, close to the absorption results. Based on the temporal evolution of the transient spectra, especially the "fast" excited-state absorption band at λ ≈ 570 nm, and on the global kinetic analysis of the time profiles, τ(1) is assigned to an ultrafast transformation of the optically excited ππ* state to an intermediate state, which may be the nπ* state, τ(2) to the subsequent isomerisation and radiationless deactivation time to the S(0) electronic ground state, and τ(3) to the eventual vibrational cooling of the internally "hot" S(0) molecules.  相似文献   

6.
The wavelength-resolved fluorescence emission kinetics of the accessory pigments and chlorophyll a in Porphyridium cruentum have been studied by pico-second laser spectroscopy. Direct excitation of the pigment B-phycoerythrin with a 530 nm, 6 ps pulse produced fluorescence emission from all of the pigments as a result of energy transfer between the pigments to the reaction centre of Photosystem II. The emission from B-phycoerythrin at 576 nm follows a nonexponential decay law with a mean fluorescence lifetime of 70 ps, whereas the fluorescence from R-phycocyanin (640 nm), allophycocyanin (660 nm) and chlorophyll a (685 nm) all appeared to follow an exponential decay law with lifetimes of 90 ps, 118 ps and 175 ps respectively. Upon closure of the Photosystem II reaction centres with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination the chlorophyll a decay became non-exponential, having a long component with an apparent lifetime of 840 ps. The fluorescence from the latter three pigments all showed finite risetimes to the maximum emission intensity of 12 ps for R-phycocyanin, 24 ps for allophycocyanin and 50 ps for chlorophyll a. A kinetic analysis of these results indicates that energy transfer between the pigments is at least 99% efficient and is governed by an exp --At1/2 transfer function. The apparent exponential behaviour of the fluorescence decay functions of the latter three pigments is shown to be a direct result of the energy transfer kinetics, as are the observed risetimes in the fluorescence emissions.  相似文献   

7.
The flavoprotein AppA from Rhodobacter sphaeroides contains an N-terminal domain belonging to a new class of photoreceptors designated BLUF domains. AppA was shown to control photosynthesis gene expression in response to blue light and oxygen tension. We have investigated the photocycle of the AppA BLUF domain by ultrafast fluorescence, femtosecond transient absorption, and nanosecond flash-photolysis spectroscopy. Time-resolved fluorescence experiments revealed four components of flavin adenine dinucleotide (FAD) excited-state decay, with lifetimes of 25 ps, 150 ps, 670 ps, and 3.8 ns. Ultrafast transient absorption spectroscopy revealed rapid internal conversion and vibrational cooling processes on excited FAD with time constants of 250 fs and 1.2 ps, and a multiexponential decay with effective time constants of 90 ps, 590 ps, and 2.7 ns. Concomitant with the decay of excited FAD, the rise of a species with a narrow absorption difference band near 495 nm was detected which spectrally resembles the long-living signaling state of AppA. Consistent with these results, the nanosecond flash-photolysis measurements indicated that formation of the signaling state was complete within the time resolution of 10 ns. No further changes were detected up to 15 micros. The quantum yield of the signaling-state formation was determined to be 24%. Thus, the signaling state of the AppA BLUF domain is formed on the ultrafast time scale directly from the FAD singlet excited state, without any apparent intermediate, and remains stable over 12 decades of time. In parallel with the signaling state, the FAD triplet state is formed from the FAD singlet excited state at 9% efficiency as a side reaction of the AppA photocycle.  相似文献   

8.
Using the pulse picosecond fluorometric technique the fluorescence properties of intact cells, isolated chromatophores and photosynthetic reaction centres were studied in bacteria Rhodopseudomonas sphaeroides, strain 1760-1.The fluorescent emission from reduced reaction centres excited by 694.3 nm light has a biphasic character, the lifetimes of the components being τ1 = 15±8 ps and τ2 = 250 ps. The faster component, τ1, contributes to the integral fluorescence in the long wavelength region. It disappears with oxidation of the reaction centres and is attributed to photoactive bacteriochlorophyll P870. The slow component, τ, is apparently due to both bacteriochlorophyll P800 and bacteriopheophytin. The fluorescence from intact cells exhibits a monophasic pattern and decays with τ = 200 ps.The fluorescence emitted by chromatophores comprises two components with τ3 = 200 ps and τ4 = 4200 ps. The duration of fluorescence τ3 increases to its maximum of 500–550 ps, as P870 is oxidized chemically or photochemically, while τ4 remains unchanged. The fluorescence with a lifetime of 200 ps was ascribed to the photosystem and the 4200-ps fluorescence to bacteriochlorophyll which had lost its functional links with the photosystem.The rise time of the fluorescence emitted by chromatophores varies from 60 or 70 ps to 350 ps depending on the wavelength of the exciting light and the recorded spectral region. On the basis of our findings the rate for energy migration was estimated to be 109 s?1.  相似文献   

9.
Based on femtosecond time-resolved spectroscopy and single photon timing experiments, intramolecular photoinduced charge transfer has been investigated in two systems containing a peryleneimide chromophore (P) and thiophene (T) groups. The first compound bearing a single thiophene ring (PT1) is used as model and shows a behavior similar to P, studied previously, while in the compound with two thiophene rings attached (PT2) electron transfer from the thiophene donor to the peryleneimide acceptor is observed in benzonitrile. Femtosecond fluorescence upconversion and femtosecond transient absorption experiments in benzonitrile indicate that this ion-pair state formation occurs in 19 ps. This ion-pair state then decays with two time constants of 1400 and 820 ps, probably corresponding to different conformations of the thiophene rings.  相似文献   

10.
Energy transfer (ET) processes between chromophores in R-phycoerythrin (R-PE) from Polysiphonia urceolata were studied by use of ultrafast spectroscopic methods. Several primary ET pathways were elaborated. A fluorescence decay component with a time constant of several hundred picoseconds observed by streak camera is tentatively assigned to the reversible formation of exciton traps between α84 and β84 pigment pairs. In order to investigate much faster ET processes in R-PE, a noncollinear optical parametric amplifier based femtosecond time-resolved transient fluorescence spectrometer was employed. The results reveal that the ET between α84 and β84 pigment pair has a time constant of 1-2?ps; the energy migration between α84 and β84 pairs within the R-PE trimer has a time constant of 30-40?ps. We also demonstrated an ET process from phycourobilin to phycoerythrobilin with a time constant as fast as 2.5-3.0?ps, which was directly observed in fluorescence kinetics by selective excitation of the phycourobilin molecules acting as the energy donor.  相似文献   

11.
We examined the feasibility of using a two-color time-resolved detection scheme with microdevices for DNA sequencing applications. A home-built dual-color optical-fiber-based time-resolved near-infrared (IR) fluorescence microscope successfully coupled lifetime discrimination with color discrimination, increasing fluorescence multiplexing capabilities. The instrument was constructed by using two pulsed-diode lasers (680/780-nm excitation) and two avalanche photodiodes as the basic building blocks. The data were processed using electronics configured in a time-correlated single-photon counting format. The use of near-IR fluorescence detection greatly simplified the hardware and allowed low detection limits (< 0.1nM). We examined the separation of a single-base tract on a microchip and compared the performance with that of conventional capillary gel electrophoresis. The microchip was fabricated in glass and contained an effective separation length of 7.0 cm. It was found that, without incorporating a solid-phase reversible immobilization cleanup procedure, the calculated lifetime of the dye label on the microchip was longer and the standard deviation was larger than those of the same sample analyzed using capillary electrophoresis. Using cleanup steps, the accuracy and precision of the measurements improved. Lifetimes of four near-IR dyes (AlexaFluor680, IRD700, IRD800, and IRD40) used in this study were determined to be 986 ps (RSD=2.1%), 1551 ps (RSD=1.8%), 520 ps (RSD=3.3%), and 788 ps (RSD=4.9%), respectively, in a microchannel filled with poly(dimethylacrylamide) (POP-6) gel. The lifetimes calculated using maximum likelihood estimators provided favorable precision on the microchip, where small numbers of photocounts were collected. An M13mp18 template was sequenced on the microchip using a two-color two-lifetime format with POP-6 as the sieving polymer. Read lengths of 294 bp with calling accuracies of 90.8 and 83.7% were achieved in each color channel. The relatively low calling accuracy and the short read length resulted primarily from the short separation channel, which yielded low electrophoretic resolution.  相似文献   

12.
Picosecond fluorescence kinetics of pea chloroplasts have been investigated at room temperature using a pulse fluorometer with a resolution time of 10-11 s. Fluorescence has been excited by both a ruby and neodymium-glass mode-locked laser and has been reocrded within the 650 to 800 nm spectral region. We have found three-component kinetics of fluorescence from pea chloroplasts with lifetimes of 80, 300 and 4500 ps, respectively. The observed time dependency of the fluorescence of different components on the functional state of the photosynthetic mechanism as well as their spectra enabled us to conclude that Photosystem I fluoresces with a lifetime of 80 ps (tauI) and Photosystem II fluoresces with a lifetime of 300 ps (tauII). Fluorescence with a lifetime of 4500 ps (tauIII) may be interpreted as originating from chlorophill monomeric forms which are not involved in photosynthesis. It was determined that the rise time of Photosystem I and Photosystem II fluorescence after 530 nm photoexcitation is 200 ps, which corrsponds to the time of energy migration to them from carotenoids.  相似文献   

13.
The tyrosine-(M)210 of the reaction center of Rhodobacter sphaeroides 2.4.1 has been changed to a tryptophan using site-directed mutagenesis. The reaction center of this mutant has been characterized by low-temperature absorption and fluorescence spectroscopy, time-resolved sub-picosecond spectroscopy, and magnetic resonance spectroscopy. The charge separation process showed bi-exponential kinetics at room temperature, with a main time constant of 36 ps and an additional fast time constant of 5.1 ps. Temperature dependent fluorescence measurements predict that the lifetime of P* becomes 4–5 times slower at cryogenic temperatures. From EPR and absorbance-detected magnetic resonance (ADMR, LD-ADMR) we conclude that the dimeric structure of P is not significantly changed upon mutation. In contrast, the interaction of the accessory bacteriochlorophyll BA with its environment appears to be altered, possibly because of a change in its position.Abbreviations ADMR - absorbance-detected magnetic resonance - LDAO - N, N dimethyl dodecyl amine-N-oxide - RC - reaction center - LD-ADMR - linear-dichroic absorbance-detected magnetic resonance - P - primary donor - B - accessory bacteriochlorophyll - - bacteriopheophytin  相似文献   

14.
The wavelength-resolved fluorescence emission kinetics of the accessory pigments and chlorophyll a in Porphyridium cruentum have been studied by picosecond laser spectroscopy. Direct excitation of the pigment B-phycoerythrin with a 530 nm, 6 ps pulse produced fluorescence emission from all of the pigments as a result of energy transfer between the pigments to the reaction centre of Photosystem II. The emission from B-phycoerythrin at 576 nm follows a nonexponential decay law with a mean fluorescence lifetime of 70 ps, whereas the fluorescence from R-phycocyanin (640 nm), allophycocyanin (660 nm) and chlorophyll a (685 nm) all appeared to follow an exponential decay law with lifetimes of 90 ps, 118 ps and 175 ps respectively. Upon closure of the Photosystem II reaction centres with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination the chlorophyll a decay became non-exponential, having a long component with an apparent lifetime of 840 ps. The fluorescence from the latter three pigments all showed finite risetimes to the maximum emission intensity of 12 ps for R-phycocyanin, 24 ps for allophycocyanin and 50 ps for chlorophyll a.A kinetic analysis of these results indicates that energy transfer between the pigments is at least 99% efficient and is governed by an exp ?At12 transfer function. The apparent exponential behaviour of the fluorescence decay functions of the latter three pigments is shown to be a direct result of the energy transfer kinetics, as are the observed risetimes in the fluorescence emissions.  相似文献   

15.
G Desie  N Boens  F C De Schryver 《Biochemistry》1986,25(25):8301-8308
The tryptophan environments in crystalline alpha-chymotrypsin were investigated by fluorescence. The heterogeneous emission from this multitryptophan enzyme was resolved by time-correlated fluorescence spectroscopy. The fluorescence decays at 296-nm laser excitation and various emission wavelengths could be characterized by a triple-exponential function with decay times tau 1 = 150 +/- 50 ps, tau 2 = 1.45 +/- 0.25 ns, and tau 3 = 4.2 +/- 0.4 ns. The corresponding decay-associated emission spectra of the three components had maxima at about 325, 332, and 343 nm. The three decay components in this enzyme can be correlated with X-ray crystallographic data [Birktoft, J.J., & Blow, D.M. (1972) J. Mol. Biol. 68, 187-240]. Inter- and intramolecular tryptophan-tryptophan energy-transfer efficiencies in crystalline alpha-chymotrypsin were computed from the accurately known positions and orientations of all tryptophan residues. These calculations indicate that the three fluorescence decay components in crystalline alpha-chymotrypsin can be assigned to three distinct classes of tryptophyl residues. Because of the different proximity of tryptophan residues to neighboring internal quenching groups, the decay times of the three classes are different. Decay tau 1 can be assigned to Trp-172 and Trp-215 and tau 2 to Trp-51 and Trp-237, while the tryptophyl residues 27, 29, 141, and 207 all have decay time tau 3.  相似文献   

16.
The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The primary reaction kinetics of the isolated photosystem Ⅱ particles and photosystem Ⅱ core complexes from spinach ( Spinacia deracea Mill. ) was investigated using the time-resolved fluorescence spectroscopy with 470 fs time resolution. 2 to 4 lifetime components were detected by the multi-exponential curve fining method. These components were analyzed and discussed in terms of different kinetic processes. It is suggested that 3 ps component is attributed to the charge separation and 0.8 ps, 12 ps, 25 ps and 100 ps components are related to the energy transfer processes. A possible kinetic scheme in photosystem Ⅱ reaction center was proposed based upon the reported previously result.  相似文献   

18.
We combined chemical and dendroecological analyses to understand the mechanisms that are involved in escaping deer browse by young Sitka spruce (Picea sitchensis) exposed to browsing by Sitka black-tailed deer (Odocoileus hemionus sitchensis) on Haida Gwaii (British Columbia, Canada). We compared chemical defences (terpenes), nutritive compounds (nitrogen, non-structural constituents, cellulose, and lignin), as well as age and radial growth of two young spruce categories growing side by side: (1) stunted spruces that were heavily browsed, shorter than the browse line, and (2) escaped spruces that were taller than the browse line but still browsed below the browse line. Escaped and stunted spruces did not differ in terpene concentrations, or in nutritive compound contents, suggesting that they had similar palatability. Escaped spruces were older that stunted spruces. Stunted and escaped trees had similar slow growth when young, suggesting no difference in initial browsing between the two spruce categories. For escaped spruce, there was a dramatic increase in radial growth at about 12-13 years old, suggesting that the apex of the trees had escaped deer browse. Because the two categories of spruces were equally accessible and did not differ in chemical defences or in nutritive compounds, and because escaped spruces were older than stunted trees and had a similar slow radial growth in their first 12-13 years, we conclude that morphological differences between stunted and escaped browsed trees are due to age and that it is only a matter of time before spruce escape deer on Haida Gwaii.  相似文献   

19.
The average fluorescence decay lifetimes, due to reaction centre photochemical trapping, were calculated for wavelengths in the 690- to 770-nm interval from the published fluorescence decay-associated emission spectra for Photosystem I (PSI)-light-harvesting complex of Photosystem I (LHCI) [Biochemistry 39 (2000) 6341] at 280 and 170 K. For 280 K, the overall trapping time at 690 nm is 81 ps and increases with wavelength to reach 103 ps at 770 nm. For 170 K, the 690-nm value is 115 ps, increasing to 458 ps at 770 nm. This underlines the presence of kinetically limiting processes in the PSI antenna (diffusion limited). The explanation of these nonconstant values for the overall trapping time band is sought in terms of thermally activated transfer from the red absorbing states to the "bulk" acceptor chlorophyll (chl) states in the framework of the Arrhenius-Eyring theory. It is shown that the wavelength-dependent "activation energies" come out in the range between 1.35 and 2.7 kcal mol(-1), increasing with the emission wavelength within the interval 710-770 nm. These values are in good agreement with the Arrhenius activation energy determined for the steady-state fluorescence yield over the range 130-280 K for PSI-LHCI. We conclude that the variable trapping time in PSI-LHCI can be accounted for entirely by thermally activated transfer from the low-energy chl states to the bulk acceptor states and therefore that the position of the various red states in the PSI antenna seems not to be of significant importance. The analysis shows that the bulk antenna acceptor states are on the low-energy side of the bulk antenna absorption band.  相似文献   

20.
The fluorescence decay of adenosine in 1:1 glycol/water glass has been determined at 77K using narrow pulse (700 ps) laser excitation at 290 nm and fluorescence detection with a scanned narrow-gate (100 ps) fast sampler together with digital averaging. Data analysis by re-iterative non-linear least squares convolution shows the decay is best represented by the bi-exponential form I(t) = 0.59exp - t/1.2ns + 0.41 exp - t/7.0ns. This leads to intrinsic radiative lifetimes of 150 ns and 220 ns respectively and a combined oscillator strength of 1.5 x 10(-2). Compared with the overall oscillator strength of 0.29 for the entire first absorption band of adenosine this indicates that transitions to and from the lowest-lying state in this band are quite forbidden. This is not accounted for by current theoretical considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号