共查询到20条相似文献,搜索用时 15 毫秒
1.
Junker BH Timberlake S Bailey FJ Reddy J Prud'homme R Gbewonyo K 《Biotechnology and bioengineering》1994,44(4):539-548
Cross-flow filtration of Escherichia coli strains was examined at the laboratory and pilot scales using Romicon 500,000 molecular-weight-cutoff hollow fiber membranes. Both the series resistance and macrosolute polarization models were employed to compare performances. Total dissolved solids content above 90 g/L and viscosity above 1.1 x 10(-3) pac s of cell-free culture media were found to decrease average filtration fluxes by over 60% both in the absence and presence of cells. Broth filtration with culture media of dissolved solids levels below 80 g/L were influenced to a greater extent by harvest cell density. The collodial nature of the complex nutrient responsible for the total solids increase affected prediction of filtration performance. Differences in strain filterability were observed with JM109 preferred over DH5 in high solids-containing media and RR1 preferred over JM109 in low dissolved solids-containing media. Their research demonstrates the importance of cell strain and media selection in the performance of early downstream processing steps. (c) 1994 John Wiley & Sons, Inc. 相似文献
2.
Robert J. Falconer Brian K. O'Neill Anton P. J. Middelberg 《Biotechnology and bioengineering》1999,62(4):455-460
In previous parts of this study we developed procedures for the high‐efficiency chemical extraction of soluble and insoluble protein from intact Escherichia coli cells. Although high yields were obtained, extraction of recombinant protein directly from cytoplasmic inclusion bodies led to low product purity due to coextraction of soluble contaminants. In this work, a two‐stage procedure for the selective extraction of recombinant protein at high efficiency and high purity is reported. In the first stage, inclusion‐body stability is promoted by the addition of 15 mM 2‐hydroxyethyldisulfide (2‐HEDS), also known as oxidized β‐mercaptoethanol, to the permeabilization buffer (6 M urea + 3 mM ethylenediaminetetraacetate [EDTA]). 2‐HEDS is an oxidizing agent believed to promote disulfide bond formation, rendering the inclusion body resistant to solubilization in 6 M urea. Contaminating proteins are separated from the inclusion‐body fraction by centrifugation. In the second stage, disulfide bonds are readily eliminated by including reducing agent (20 mM dithiothreitol [DTT]) into the permeabilization buffer. Extraction using this selective two‐stage process yielded an 81% (w/w) recovery of the recombinant protein Long‐R3‐IGF‐I from inclusion bodies located in the cytoplasm of intact E. coli, at a purity of 46% (w/w). This was comparable to that achieved by conventional extraction (mechanical disruption followed by centrifugation and solubilization). A pilot‐scale procedure was also demonstrated using a stirred reactor and diafiltration. This is the first reported study that achieves both high extraction efficiency and selectivity by the chemical treatment of cytoplasmic inclusion bodies in intact bacterial cells. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 455–460, 1999. 相似文献
3.
4.
Middelberg AP O'Neill BK L Bogle ID Snoswell MA 《Biotechnology and bioengineering》1991,38(4):363-370
The high-pressure homogenization of Escherichia coli, strain JM101, containing inclusion bodies of recombinant porcine somatotropin was investigated. A novel technique employing an analytical disc centrifuge was used to monitor the disruption. This a direct technique which measures cell disintegration rather than soluble protein release. The technique is particularly suited to measurements where the disruption approaches 100%. The disk centrifuge provides a size distribution of the homogenate, and furnishes evidence for the preferential disruption of larger cells. For E. coli containing inclusion bodies, and increase in the cell feed concentration from 145 g/L (wet weight) to 330 g/L resulted is poorer homogenization. Poorer disruption was also obtained by lowering the feed temperature from 20 degrees C to 5 degrees C. Only slight variations in performance were obtained by increasing the feed pH from 7.5 to 9.0 or by storing the feed at 4 degrees C for 24 h prior to disruption. Comparison with uninduced E. coli strain JM101, showed that the disruption obtained is higher for bacteria containing a recombinant inclusion body. 相似文献
5.
Markert Y Mansfeld J Schierhorn A Rücknagel KP Ulbrich-Hofmann R 《Biotechnology and bioengineering》2007,98(1):48-59
Phospholipases A(2) (PLA(2)) play an important role for the production of lysophospholipids. Presently they are mainly obtained from porcine or bovine pancreas but these mammalian sources are not accepted in several fields of application. To make accessible a non-mammalian PLA(2) to industrial application, synthetic genes encoding PLA(2) from honey bee (Apis mellifera) with modified N-termini were constructed and expressed in Escherichia coli. While expression of the gene with an N-terminal leader sequence to direct the protein into the periplasm failed, four variants with slightly modified N-termini (I1A-PLA(2), I1V-PLA(2), His(6)-tagged PLA(2) and PLA(2) still containing the start methionine) were successfully expressed. In all cases, the PLA(2) variants were produced as inclusion bodies. Their protein content amounted to 26-35% of total cell protein. The optimized renaturation procedure and subsequent purification by cation-exchange chromatography yielded pure active enzymes in yields of 4-11 mg L(-1). The recombinant PLA(2) variants showed activities, far-UV CD and fluorescence spectra similar to the glycosylated PLA(2) isolated from the venom glands of honey bee (bv-PLA(2)). The thermodynamic stabilities of the recombinant enzymes calculated from the transition curves of guanidine hydrochloride induced unfolding were also nearly identical to the stability of bv-PLA(2). For the variant I1A-PLA(2) high-cell density fermentation in 10 L-scale using mineral salt medium was shown to increase the volumetric enzyme yield considerably. 相似文献
6.
Armando A. Diaz Emanuele Tomba Reese Lennarson Rex Richard Miguel J. Bagajewicz Roger G. Harrison 《Biotechnology and bioengineering》2010,105(2):374-383
In this article we present a new and more accurate model for the prediction of the solubility of proteins overexpressed in the bacterium Escherichia coli. The model uses the statistical technique of logistic regression. To build this model, 32 parameters that could potentially correlate well with solubility were used. In addition, the protein database was expanded compared to those used previously. We tested several different implementations of logistic regression with varied results. The best implementation, which is the one we report, exhibits excellent overall prediction accuracies: 94% for the model and 87% by cross‐validation. For comparison, we also tested discriminant analysis using the same parameters, and we obtained a less accurate prediction (69% cross‐validation accuracy for the stepwise forward plus interactions model). Biotechnol. Bioeng. 2010; 105: 374–383. © 2009 Wiley Periodicals, Inc. 相似文献
7.
8.
9.
A novel cross-flow technique for membrane filtration of bacterial cell suspensions was established. This is an air slugs entrapped cross-flow method in which air slugs were generated by introducing air into the cross-flow stream. As air slugs moved along with cross-flow, the disturbance of cell sublayer formation on membrane surface was enhanced. As a consequence, filtration flux was improved and stabilized. The effect of air slugs on improving filtration flux was more pronounced in filtering gram-negative Escherichia coli cell than grampositive Brevibacterium flavum cell. Moreover, air slug was about 50% more effective on reducing filtration resistance using ultrafiltration (UF) membrane of 300,000 molecular weight cutoff (MWCO) than microfiltration (MF) membrane of 0.2 mum. (c)1993 John Wiley & Sons, Inc. 相似文献
10.
Germn L. Rosano Enrique S. Morales Eduardo A. Ceccarelli 《Protein science : a publication of the Protein Society》2019,28(8):1412-1422
The production of proteins in sufficient amounts is key for their study or use as biotherapeutic agents. Escherichia coli is the host of choice for recombinant protein production given its fast growth, easy manipulation, and cost‐effectiveness. As such, its protein production capabilities are continuously being improved. Also, the associated tools (such as plasmids and cultivation conditions) are subject of ongoing research to optimize product yield. In this work, we review the latest advances in recombinant protein production in E. coli. 相似文献
11.
Vera A González-Montalbán N Arís A Villaverde A 《Biotechnology and bioengineering》2007,96(6):1101-1106
Protein aggregation is a major bottleneck during the bacterial production of recombinant proteins. In general, the induction of gene expression at sub-optimal growth temperatures improves the solubility of aggregation-prone polypeptides and minimizes inclusion body (IB) formation. However, the effect of low temperatures on the quality of the recombinant protein, especially within the insoluble cell fraction, has been hardly ever explored. In this work, we have examined the conformational status of a recombinant GFP protein when produced in Escherichia coli below 37 degrees C. As expected, the fraction of aggregated protein largely decreased at lower temperatures, while the conformational quality of both soluble and aggregated GFP, as reflected by its specific fluorescence emission, progressively improved. This observation indicates that physicochemical conditions governing protein folding affect concurrently the quality of the soluble and the aggregated forms of a misfolding-prone protein, and that protein misfolding and aggregation are clearly not coincident events. 相似文献
12.
Andriy E. Zakalskiy Nataliya Ye. Stasyuk Oksana M. Zakalska Yuriy R. Boretsky Mykhailo V. Gonchar 《Cell biology international》2020,44(5):1204-1211
The codA gene of Corynebacterium glutamicum PCM 1945 coding for a creatinine deiminase (CDI) (EC 3.5.4.21) has been amplified and cloned. The recombinant strain of Escherichia coli that overproduces the (His)6‐tagged inactive CDI of C. glutamicum as inclusion bodies has been constructed. After solubilization of inclusion bodies in the presence of 0.3% N‐lauroylsarcosine, the enzyme was renaturated and purified by a single‐step procedure using metal‐affinity chromatography. The yield of the (His)6‐tagged CDI is ~30 mg from 1 L culture. The purified enzyme is sufficiently stable under the conditions designed and possesses an activity of 10–20 U/mg. The main characteristics of the tagged enzyme remained similar to that of the natural enzyme. 相似文献
13.
The Regulator of Chromosome Condensation protein (RCC1) is located in both the soluble and inclusion body (IB) fractions of the whole cell lysate when expressed in Escherichia coli BL21 (pLysS) at temperatures below 30 degrees C. When bacterial growth was carried out at 20 degrees C, the majority of the RCC1 remained soluble up to 5.5 h postinduction, When the temperature was raised to 25 degrees C, RCC1 IB was dominant by 1.5 h postinduction. The shift in RCC1 IB formation with temperature suggests that in addition to increased translation rates, folding and aggregation processes may contribute to RCC1 IB formation at higher temperatures. (c) 1995 John Wiley & Sons, Inc. 相似文献
14.
《Bioscience, biotechnology, and biochemistry》2013,77(1):162-164
We isolated temperature-sensitive mutants of the Escherichia coli bamD gene, which is essential for the assembly of β-barrel outer membrane proteins. As their multicopy suppressor, we identified a novel yiaD gene encoding a putative lipoprotein, YiaD. Mutations of its OmpA domain, which is required for interaction with peptidoglycan, affected suppression, suggesting that interaction with peptidoglycan is important to YiaD function. 相似文献
15.
16.
17.
Daniel Hoffmann Mehrdad Ebrahimi Doreen Gerlach Peter Czermak 《Critical reviews in biotechnology》2018,38(5):729-744
The production of recombinant proteins in the microbial host Escherichia coli often results in the formation of cytoplasmic protein inclusion bodies (IBs). Proteins forming IBs are often branded as difficult-to-express, neglecting that IBs can be an opportunity for their production. IBs are resistant to proteolytic degradation and contain up to 90% pure recombinant protein, which does not interfere with the host metabolism. This is especially advantageous for host-toxic proteins like antimicrobial peptides (AMPs). IBs can be easily isolated by cell disruption followed by filtration and/or centrifugation, but conventional techniques for the recovery of soluble proteins from IBs are laborious. New approaches therefore simplify protein recovery by optimizing the production process conditions, and often include mild resolubilization methods that either increase the yield after refolding or avoid the necessity of refolding all together. For the AMP production, the IB-based approach is ideal, because these peptides often have simple structures and are easy to refold. The intentional IB production of almost every protein can be achieved by fusing recombinant proteins to pull-down tags. This review discusses the techniques available for IB-based protein production before considering technical approaches for the isolation of IBs from E. coli lysates followed by efficient protein resolubilization which ideally omits further refolding. The techniques are evaluated in terms of their suitability for the process-scale production and downstream processing of recombinant proteins and are discussed for AMP production as an example. 相似文献
18.
Inactivation of the vascular permeability-increasing activity of bradykinin by mycoplasmas 总被引:1,自引:0,他引:1
Mycoplasma pneumoniae, M. genitalium, M. fermentans, M. hominis, M. salivarium, M. orale, Ureaplasma urealyticum and Acholeplasma laidlawii inactivated the vascular permeability-increasing activity of bradykinin when the mixture of bradykinin and mycoplasma cells was injected after incubation at 37 degrees C for 1 h. Cell components responsible for inactivation of the activity of bradykinin were found to be arginine-specific aminopeptidase and carboxypeptidase. 相似文献
19.
Jiang Gu Xiaowei Ji Jianxun Qi Ying Ma Xuhu Mao Quanming Zou 《Acta Crystallographica. Section F, Structural Biology Communications》2010,66(8):929-931
Outer membrane protein A (OmpA) of enterohaemorrhagic Escherichia coli (EHEC) plays multiple roles in bacterial physiology and pathogenesis, such as mediation of bacterial conjunction, maintenance of cell shape, induction of adhesion of EHEC to host cells etc. Better understanding of the functions of OmpA will help in the control of EHEC infections. OmpA is composed of two domains: the N‐terminal domain and the C‐terminal domain. The N‐terminal domain is a β‐barrel structure and embeds in the outer membrane of the bacterium. The structure and function of the C‐terminal domain of OmpA (OmpAC) remain elusive. In this study, recombinant OmpAC from EHEC was purified and crystallized and a diffraction data set was collected to 2.7 Å resolution. The crystals belonged to space group I4132, with unit‐cell parameter a = 158.99 Å. The Matthews coefficient and solvent content were calculated to be 2.55 Å3 Da−1 and 51.77%, respectively, for two molecules in the asymmetric unit. 相似文献
20.
Strains of enteropathogenic Escherichia coli (EPEC) were examined for a factor, described as an outer membrane protein (OMP) of 32 kilodaltons (kDa) and reported to be involved in the adhesion of EPEC to HeLa cells. A comparable OMP of 35 kDa was detected in strains of EPEC, although expression of this protein was not related to the ability of strains to adhere to HEp-2 cells. The 35 kDa OMP was found to be heat-modifiable and peptidoglycan associated, and considered to be the porin protein OmpF. 相似文献