首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CYP27B1 (25-hydroxyvitamin D(3)-1alpha-hydroxylase) catalyzes the metabolization of 25-hydroxyvitamin D(3) to 1,25(OH)(2)D(3) the most active natural Vitamin D metabolite. 1,25(OH)(2)D(3) plays a role in the regulation of autoimmunity and cell proliferation and prevents the development of autoimmune diabetes mellitus in animal models besides other autoimmune disorders. One hundred and eighty-seven families with one offspring affected with type1diabetes mellitus were genotyped for the polymorphisms in the promoter region (-1260 C/A) and intron 6 (2338 T/C) of the CYP27B1 gene on chromosome 12 q13.1-13.3 and extended transmission disequilibrium tests (ETDT) were performed. The haplotype CT (-1260 A/2338 T) was significantly more often transmitted to affected offspring (96 transmitted (T) versus 63 not transmitted (NT), P = 0.0089). While the AT (-1260 C/2838 T) was significantly less often transmitted (37 T versus 60 NT, P = 0.0195). This study suggests that CYP27B1 haplotypes may confer susceptibility to type 1 diabetes mellitus in Germans.  相似文献   

2.
3.
4.
CYP27A1 catalyses hydroxylations in the biosynthesis of bile acids and the bioactivation of vitamin D3. We investigated the expression of CYP27A1 in human monocytes, monocyte-derived macrophages, and dendritic cells on mRNA and protein levels as well as its enzymatic activity in comparison with the expression of CYP27B1 and CYP24A1. Macrophages showed a strong expression of CYP27A1, whereas monocytes and dendritic cells expressed low levels of CYP27A1 mRNA. Immunohistochemistry revealed CYP27A1 and CYP27B1 protein expression in macrophages. Accordingly, macrophages converted vitamin D3 into the active metabolite 1,25(OH)2D3. Dendritic cells also metabolized vitamin D3 although to a lesser extent. This could be due to the high expression of CYP24A1, the enzyme that degrades 25(OH)D3 and 1,25(OH)2D3. Our results show that macrophages and dendritic cells are capable to perform both hydroxylation steps of the vitamin D3 metabolism suggesting a possible role of local 1,25(OH)2D3 synthesis by myeloid cells in the skin and gut.  相似文献   

5.
The active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25[OH](2)D(3)) is a potent immunomodulatory seco-steroid. We have demonstrated that several components of vitamin D metabolism and signaling are strongly expressed in human uterine decidua from first trimester pregnancies, suggesting that locally produced 1,25(OH)(2)D(3) may exert immunosuppressive effects during early stages of gestation. To investigate this further, we used primary cultures of human decidual cells from first and third trimester pregnancies to demonstrate expression and activity of the enzyme that catalyzes synthesis of 1,25(OH)(2)D(3), 1alpha-hydroxylase (CYP27B1). Synthesis of 1,25(OH)(2)D(3) was higher in first trimester decidual cells (41 +/- 11.8 fmoles/h/mg protein) than in third trimester cells (8 +/- 4.4 fmoles/h/mg protein; P < 0.05). Purification of decidual cells followed by quantitative RT-PCR analysis showed that CYP27B1 was expressed by both CD10(+VE) stromal-enriched and CD10(-VE) stromal-depleted cells, with higher levels of mRNA in first trimester pregnancies. Expression of CYP27B1 correlated with TLR4 and IDO. Functional responses to 1,25(OH)(2)D(3) were studied using CD56(+VE) natural killer (NK) cells isolated from first trimester decidua. Decidual NK cells treated with 1,25(OH)(2)D(3) or precursor 25-hydroxyvitamin D(3) (25OHD(3)) for 28 h showed decreased synthesis of cytokines, such as granulocyte-macrophage colony stimulating factor 2 (CSF2), tumor necrosis factor, and interleukin 6, but increased expression of mRNA for the antimicrobial peptide cathelicidin antimicrobial peptide. These data indicate that human decidual cells are able to synthesize active 1,25(OH)(2)D(3), particularly in early gestation, and this may act in an autocrine/paracrine fashion to regulate both acquired and innate immune responses at the fetal-maternal interface.  相似文献   

6.
Selective inhibitors of CYP24A1 represent an important synthetic target in a search for novel vitamin D compounds of therapeutic value. In the present work, we show the synthesis and biological properties of two novel side chain modified 2-methylene-19-nor-1,25(OH)(2)D(3) analogs, the 22-imidazole-1-yl derivative 2 (VIMI) and the 25-N-cyclopropylamine compound 3 (CPA1), which were efficiently prepared in convergent syntheses utilizing the Lythgoe type Horner-Wittig olefination reaction. When tested in a cell-free assay, both compounds were found to be potent competitive inhibitors of CYP24A1, with the cyclopropylamine analog 3 exhibiting an 80-1 selective inhibition of CYP24A1 over CYP27B1. Addition of 3 to a mouse osteoblast culture sustained the level of 1,25(OH)(2)D(3), further demonstrating its effectiveness in CYP24A1 inhibition. Importantly, the in vitro effects on human promyeloid leukemia (HL-60) cell differentiation by 3 were nearly identical to those of 1,25(OH)(2)D(3) and in vivo the compound showed low calcemic activity. Finally, the results of preliminary theoretical studies provide useful insights to rationalize the ability of analog 3 to selectively inhibit the cytochrome P450 isoform CYP24A1.  相似文献   

7.
8.
Although local synthesis of 1,25D has been postulated to regulate parameters of cell growth and differentiation in non-renal cells, the physiological role of 1,25D production in bone cells remains unclear. We used the technique of RNA interference to inhibit the mRNA encoding the enzyme responsible for 1,25D synthesis, 25-hydroxyvitamin D 1alpha-hydroxylase (CYP27B1). Human osteosarcoma (HOS) cells were transfected with siRNA for CYP27B1 or non-silencing RNA before being treated with 25D for 48h under normal growth conditions. De novo synthesis of 1,25D was measured in the media as well as mRNA levels for CYP27B1, osteocalcin (OCN) and 25-hydroxyvitamin D 24-hydroxylase (CYP24). We demonstrated that HOS cells express CYP27B1 mRNA, metabolize 25D and secrete detectable levels of de novo synthesized 1,25D. CYP27B1 mRNA silencing by RNAi, resulted in the suppression of 1,25D production and subsequent reduction of OCN and CYP24 mRNA expression. Our findings suggest that local 1,25D synthesis has paracrine effects in the bone microenvironment implying that vitamin D metabolism in human osteoblasts represents a physiologically important pathway, possibly regulating the maturation of osteoblasts.  相似文献   

9.
The capacity of parathyroid hormone (PTH) to increase serum 1,25(OH)(2)D levels declines with age in both rats and humans. In young rats, PTH stimulates renal 1,25(OH)(2)D production and increases mRNA levels for the terminal mitochondrial P450 of the 1alpha-hydroxylase complex (CYP27B1 or CYP1alpha). However, in older rats PTH increases mRNA levels but not 1,25(OH)(2)D production. This suggests that in old animals there is either decreased CYP1alpha protein levels in response to PTH or that the protein produced lacks functionality. The CYP1alpha protein is located on the inner mitochondrial membrane, the site of increased free radical production with age. To study these possibilities, we examined the effect of PTH and free radicals on CYP1alpha expression in a model system-AOK-B50 renal tubular cells. PTH increased CYP1alpha mRNA and protein in a similar time-dependent manner, suggesting that CYP1alpha protein levels were largely regulated by mRNA levels. The effect of free radicals was determined by preincubation with hydrogen peroxide (H(2)O(2)), a standard model for studying free radical damage. H(2)O(2) inhibited PTH-stimulated CYP1alpha protein levels and 1,25(OH)(2)D production in a dose dependent manner. However, 1,25(OH)(2)D production was more sensitive to H(2)O(2) than was CYP1alpha protein levels. This suggests that the catalytic activity of the CYP1alpha protein may be reduced by free radical damage in these cells. Future studies will focus on detecting oxidative damage in this model system and in vivo.  相似文献   

10.
Although local synthesis of 1,25D has been postulated to regulate parameters of cell growth and differentiation in non-renal cells, the physiological role of 1,25D production in bone cells remains unclear. We used the technique of RNA interference to inhibit the mRNA encoding the enzyme responsible for 1,25D synthesis, 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1). Human osteosarcoma (HOS) cells were transfected with siRNA for CYP27B1 or non-silencing RNA before being treated with 25D for 48 h under normal growth conditions. De novo synthesis of 1,25D was measured in the media as well as mRNA levels for CYP27B1, osteocalcin (OCN) and 25-hydroxyvitamin D 24-hydroxylase (CYP24). We demonstrated that HOS cells express CYP27B1 mRNA, metabolize 25D and secrete detectable levels of de novo synthesized 1,25D. CYP27B1 mRNA silencing by RNAi, resulted in the suppression of 1,25D production and subsequent reduction of OCN and CYP24 mRNA expression. Our findings suggest that local 1,25D synthesis has paracrine effects in the bone microenvironment implying that vitamin D metabolism in human osteoblasts represents a physiologically important pathway, possibly regulating the maturation of osteoblasts.  相似文献   

11.
Vitamin D binding protein (DBP) plays a key role in the bioavailability of active 1,25-dihydroxyvitamin D (1,25(OH)(2)D) and its precursor 25-hydroxyvitamin D (25OHD), but accurate analysis of DBP-bound and free 25OHD and 1,25(OH)(2)D is difficult. To address this, two new mathematical models were developed to estimate: 1) serum levels of free 25OHD/1,25(OH)(2)D based on DBP concentration and genotype; 2) the impact of DBP on the biological activity of 25OHD/1,25(OH)(2)D in vivo. The initial extracellular steady state (eSS) model predicted that 50 nM 25OHD and 100 pM 1,25(OH)(2)D), <0.1% 25OHD and <1.5% 1,25(OH)(2)D are 'free' in vivo. However, for any given concentration of total 25OHD, levels of free 25OHD are higher for low affinity versus high affinity forms of DBP. The eSS model was then combined with an intracellular (iSS) model that incorporated conversion of 25OHD to 1,25(OH)(2)D via the enzyme CYP27B1, as well as binding of 1,25(OH)(2)D to the vitamin D receptor (VDR). The iSS model was optimized to 25OHD/1,25(OH)(2)D-mediated in vitro dose-responsive induction of the vitamin D target gene cathelicidin (CAMP) in human monocytes. The iSS model was then used to predict vitamin D activity in vivo (100% serum). The predicted induction of CAMP in vivo was minimal at basal settings but increased with enhanced expression of VDR (5-fold) and CYP27B1 (10-fold). Consistent with the eSS model, the iSS model predicted stronger responses to 25OHD for low affinity forms of DBP. Finally, the iSS model was used to compare the efficiency of endogenously synthesized versus exogenously added 1,25(OH)(2)D. Data strongly support the endogenous model as the most viable mode for CAMP induction by vitamin D in vivo. These novel mathematical models underline the importance of DBP as a determinant of vitamin D 'status' in vivo, with future implications for clinical studies of vitamin D status and supplementation.  相似文献   

12.
Like the vitamin D receptor (VDR), the CYP27B1-hydroxylase is expressed widely in human tissues. This expression profile establishes the potential for interaction of the VDR with the product of the CYP27B1, 1,25-dihydroxyvitamin D (1,25-(OH)(2)D), in either an intracrine or paracrine mode. This expansive expression profile also suggests that the local production and action of 1,25-(OH)(2)D to regulate VDR-directed gene expression may be similarly wide-ranging and distinct from what occurs in the kidney; the proximal renal tubular epithelial cell is the richest source of the CYP27B1 and the site for production of 1,25-(OH)(2)D destined to function as a hormone. Existence of the CYP27B1 at extrarenal sites has been widely documented, although the functional impact of the enzyme in these tissues has yet to be fully demonstrated. Two notable exceptions are the disease-activated macrophage (e.g., in sarcoidosis or tuberculosis) and the placenta. These two tissues are capable of generating enough 1,25-(OH)(2)D so as to be detectable in the general circulation. As such, this review will focus on CYP27B1 expression only at these two sites, theorizing that 1,25-(OH)(2)D production at these sites is for the purpose of local immunoregulatory function, not for controlling calcium balance in the host or the fetus.  相似文献   

13.
CYP24A1 is the cytochrome P450 component of the 25-hydroxyvitamin D(3)-24-hydroxylase enzyme that catalyzes the conversion of 25-hydroxyvitamin D(3) (25-OH-D(3)) and 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) into 24-hydroxylated products, which constitute the degradation of the vitamin D molecule. This review focuses on recent data in the CYP24A1 field, including biochemical, physiological and clinical developments. Notable among these are: the first crystal structure for rat CYP24A1; mutagenesis studies which change the regioselectivity of the enzyme; and the finding that natural inactivating mutations of CYP24A1 cause the genetic disease idiopathic infantile hypercalcemia (IIH). The review also discusses the emerging correlation between rising serum phosphate/FGF-23 levels and increased CYP24A1 expression in chronic kidney disease, which in turn underlies accelerated degradation of both serum 25-OH-D(3) and 1,25-(OH)(2)D(3) in this condition. This review concludes by evaluating the potential clinical utility of blocking this enzyme with CYP24A1 inhibitors in various disease states.  相似文献   

14.
1alpha-Hydroxy-23 carboxy-24,25,26,27-tetranorvitamin D(3) (calcitroic acid) is known to be the major water-soluble metabolite produced during the deactivation of 1,25-(OH)(2)D(3). This deactivation process is carried out exclusively by the multicatalytic enzyme CYP24 and involves a series of oxidation reactions at C(24) and C(23) leading to side-chain cleavage and, ultimately, formation of the calcitroic acid. Like 1,25-(OH)(2)D(3), 1alpha,25-1,25-(OH)(2)D(2) is also known to undergo side-chain oxidation and side-chain cleavage to form calcitroic acid (Zimmerman et al. [2001]. 1,25-(OH)(2)D(2) differs from 1,25-(OH)(2)D(3) by the presence of a double bond at C(22) and a methyl group at C(24). To date, there have been no studies detailing the participation of CYP24 in the production of calcitroic acid from 1,25-(OH)(2)D(2). We, therefore, studied the metabolism of 1,25-(OH)(2)D(3) and 1,25-(OH)(2)D(2) using a purified rat CYP24 system. Lipid and aqueous-soluble metabolites were prepared for characterization. Aqueous-soluble metabolites were subjected to reverse-phase high-pressure liquid chromatography (HPLC) analysis. As expected, 1,23(OH)(2)-24,25,26,27-tetranor D and calcitroic acid were the major lipid and aqueous-soluble metabolites, respectively, when 1,25-(OH)(2)D(3) was used as substrate. However, when 1,25-(OH)(2)D(2) was used as substrate, 1,24(R),25-(OH)(3)D(2) was the major lipid-soluble metabolite with no evidence for the production of either 1,23(OH)(2)-24,25,26,27-tetranor D or calcitroic acid. Apparently, the CYP24 was able to 24-hydroxylate 1,25-(OH)(2)D(2), but was unable to effect further changes, which would result in side-chain cleavage. These data suggest that the presence of either the double bond at C(22) or the C(24) methyl group impedes the metabolism of 1,25-(OH)(2)D(2) to calcitroic acid by CYP24 and that enzymes other than CYP24 are required to effect this process.  相似文献   

15.
16.
1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has been reported to stimulate lung maturity, alveolar type II cell differentiation, and pulmonary surfactant synthesis in rat lung. We hypothesized that 1,25(OH)(2)D(3) stimulates expression of surfactant protein-A (SP-A), SP-B, and SP-C in human fetal lung and type II cells. We found that immunoreactive vitamin D receptor was detectable in fetal lung tissue and type II cells only when incubated with 1,25(OH)(2)D(3). 1,25(OH)(2)D(3) significantly decreased SP-A mRNA in human fetal lung tissue but did not significantly decrease SP-A protein in the tissue. In type II cells, 1,25(OH)(2)D(3) alone had no significant effect on SP-A mRNA or protein levels but reduced SP-A mRNA and protein in a dose-dependent manner when the cells were incubated with cAMP. SP-A mRNA levels in NCI-H441 cells, a nonciliated bronchiolar epithelial (Clara) cell line, were decreased in a dose-dependent manner in the absence or presence of cAMP. 1,25(OH)(2)D(3) had no significant effect on SP-B mRNA levels in lung tissue but increased SP-B mRNA and protein levels in type II cells incubated in the absence or presence of cAMP. Expression of SP-C mRNA was unaffected by 1,25(OH)(2)D(3) in lung tissue incubated +/- cAMP. These results suggest that regulation of surfactant protein gene expression in human lung and type II cells by 1,25(OH)(2)D(3) is not coordinated; 1,25(OH)(2)D(3) decreases SP-A mRNA and protein levels in both fetal lung tissue and type II cells, increases SP-B mRNA and protein levels only in type II cells, and has no effect on SP-C mRNA levels.  相似文献   

17.
18.
The vitamin D(3) catabolizing enzyme, CYP24, is frequently over-expressed in tumors, where it may support proliferation by eliminating the growth suppressive effects of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). However, the impact of CYP24 expression in tumors or consequence of CYP24 inhibition on tumor levels of 1,25(OH)(2)D(3)in vivo has not been studied due to the lack of a suitable quantitative method. To address this need, an LC-MS/MS assay that permits absolute quantitation of 1,25(OH)(2)D(3) in plasma and tumor was developed. We applied this assay to the H292 lung tumor xenograft model: H292 cells eliminate 1,25(OH)(2)D(3) by a CYP24-dependent process in vitro, and 1,25(OH)(2)D(3) rapidly induces CYP24 expression in H292 cells in vivo. In tumor-bearing mice, plasma and tumor concentrations of 1,25(OH)(2)D(3) reached a maximum of 21.6 and 1.70ng/mL, respectively, following intraperitoneal dosing (20μg/kg 1,25(OH)(2)D(3)). When co-administered with the CYP24 selective inhibitor CTA091 (250μg/kg), 1,25(OH)(2)D(3) plasma levels increased 1.6-fold, and tumor levels increased 2.6-fold. The tumor/plasma ratio of 1,25(OH)(2)D(3) AUC was increased 1.7-fold by CTA091, suggesting that the inhibitor increased the tumor concentrations of 1,25(OH)(2)D(3) independent of its effects on plasma disposition. Compartmental modeling of 1,25(OH)(2)D(3) concentration versus time data confirmed that: 1,25(OH)(2)D(3) was eliminated from plasma and tumor; CTA091 reduced the elimination from both compartments; and that the effect of CTA091 on tumor exposure was greater than its effect on plasma. These results provide evidence that CYP24-expressing lung tumors eliminate 1,25(OH)(2)D(3) by a CYP24-dependent process in vivo and that CTA091 administration represents a feasible approach to increase tumor exposure to 1,25(OH)(2)D(3).  相似文献   

19.
Cytochrome P450 3A4 and 3A7 (CYP3A4 and CYP3A7, respectively) are predominant forms in the human adult and fetal liver, respectively. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is known to be a potent inducer of CYP3A4 in human colon carcinoma Caco-2 via vitamin D receptor (VDR). However, whether CYP3A7 is inducible by 1,25(OH)(2)D(3) has not yet been elucidated. In the present study, we examined the effect of 1,25(OH)(2)D(3) on CYP3A7 gene expression in Caco-2 cells, which express CYP3A4 and CYP3A7 mRNAs. 1,25(OH)(2)D(3) hardly induced the expression of CYP3A7 mRNA in contrast to the marked induction of CYP3A4 mRNA. Reporter assay using 5'-franking region CYP3A4 and CYP3A7 genes also revealed that 1,25(OH)(2)D(3) activates CYP3A4 promoter, but not CYP3A7 promoter, which has two mutations in the proximal ER6 site compared with CYP3A4 promoter. In addition, we found that the binding of VDR to the proximal ER6 in CYP3A7 gene was markedly less than that to the proximal ER6 in CYP3A4 gene using gel shift assay. Taken together, the decrease of VDR binding to the proximal ER6 caused by the mutation results in the loss of CYP3A7 gene activation by 1,25(OH)(2)D(3).  相似文献   

20.
Details of the molecular mechanisms determining levels of the secosteroid, 1,25-dihydroxyvitamin D(3) (1,25D) remain to be elucidated. The current paradigm for the control of serum 1,25D levels is the tight regulation of renal 25-hydroxyvitamin D-1alpha-hydroxlase (CYP27B1) activity by a number of physiological factors. 1,25D production is also regulated by the cytochrome P450 enzyme, 25-hydroxyvitamin D-24-hydroxylase (CYP24), which through side chain hydroxylation reactions, inactivates 1,25D. We have recently demonstrated that renal CYP27B1 and CYP24 expression contribute equally to regulating serum 1,25D levels. We now describe the contribution of renal Vitamin D receptor (VDR) expression in determining serum 1,25D levels. Serum 1,25D levels were decreased when the dietary calcium intake was increased. We measured mRNA levels for CYP27B1, CYP24 and VDR receptor in kidney RNA extracts from animals fed diets containing different levels of calcium, ranging from 0.05 to 1%. Serum 1,25D levels were negatively correlated with renal CYP24 mRNA levels (R2 = 0.35, P < 0.01) while renal VDR is positively correlated with renal CYP24 mRNA (R2 = 0.80, P < 0.001). However, only renal VDR mRNA remained a significant determinant of renal CYP24 expression when both these variables were included in multiple linear regression analysis (multiple R2 = 0.89, P < 0.001). These findings suggest that kidney CYP24 activity acts in concert with kidney CYP27B1 to control serum 1,25D levels and that serum 1,25D stimulates renal CYP24 expression by acting through the renal VDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号