首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that very low density lipoproteins (VLDL) from patients with Tangier disease are less effective as a substrate for human milk lipoprotein lipase (LPL) than VLDL from normal controls as assessed by measuring the first order rate constant (k1) of triglyceride hydrolysis. Tangier VLDL also has a higher content of apolipoprotein (apo) A-II than normal VLDL. To explore the possible relationship between the relatively high concentration of apoA-II in VLDL and low k1 values, Tangier VLDL were fractionated on an anti-apoA-II immunosorber. The retained fraction contained a newly identified triglyceride-rich lipoprotein characterized by the presence of apolipoproteins A-II, B, C-I, C-II, C-III, D, and E (LP-A-II:B:C:D:E or LP-A-II:B complex), whereas the unretained fraction consisted of previously identified triglyceride-rich apoB-containing lipoproteins free of apoA-II. In VLDL from patients with Tangier disease or type V hyperlipoproteinemia, the LP-A-II:B complex accounted for 70-90% and 25-70% of the total apoB content, respectively. The LP-A-II:B complexes had similar lipid and apolipoprotein composition; they were poor substrates for LPL as indicated by their low k1 values (0.014-0.016 min-1). In contrast, the apoA-II-free lipoproteins present in unretained fractions were effective substrates for LPL with k1 values equal to or greater than 0.0313 min-1. These results indicate that triglyceride-rich lipoproteins consist of several apoB-containing lipoproteins, including the LP-A-II:B complex, and that lipoprotein particles of similar size and density but distinct apolipoprotein composition also possess distinct metabolic properties.  相似文献   

2.
Amino acid precursors labelled with stable isotopes have been successfully used to explore the metabolism of the apolipoproteins of HDL. Some methodological and mathematical modelling problems remain, mainly related to amino acid recycling in a plasma protein such as apolipoprotein A-I with a long residence time (the reciprocal of the fractional catabolic rate) of 4-5 days. Apolipoprotein A-I, apolipoprotein E, and apolipoprotein A-IV in triglyceride-rich lipoproteins (containing chylomicrons, VLDL, and remnants) exhibit more complex kinetics. The small amounts of apolipoprotein A-I and of apolipoprotein A-IV in the triglyceride-rich lipoproteins have a residence time similar to that of the apolipoprotein A-I of HDL. In contrast, the apolipoprotein E in triglyceride-rich lipoproteins has been found to have an average residence time of 0.11 days. Diets low in saturated fat and cholesterol, which lower HDL levels, do so by decreasing the secretion of apolipoprotein A-I, with apolipoprotein A-II kinetics unaffected. Individuals with impaired glucose tolerance have a decreased residence time of apolipoprotein A-I but no change in secretion rate or in apolipoprotein A-II kinetics. This suggests a link between insulin resistance and the risk of atherosclerosis. In heterozygous familial hypercholesterolemia, both the fractional catabolic rate and the secretion rate of apolipoprotein A-I are increased, resulting in no change in the plasma level. Stable isotope studies have strengthened the evidence that triglyceride enrichment of HDL increases its catabolism Laboratory.  相似文献   

3.
We have recently described a novel recycling pathway of triglyceride-rich lipoprotein (TRL)-associated apolipoprotein (apo) E in human hepatoma cells. We now demonstrate that not only TRL-derived apoE but also lipoprotein lipase (LPL) is efficiently recycled in vitro and in vivo. Similar recycling kinetics of apoE and LPL in normal and low density lipoprotein receptor-negative human fibroblasts also indicate that the low density lipoprotein receptor-related protein seems to be involved. Intracellular sorting mechanisms are responsible for reduced lysosomal degradation of both ligands after receptor-mediated internalization. Immediately after internalization in rat liver, TRLs are disintegrated, and apoE and LPL are found in endosomal compartments, whereas TRL-derived phospholipids accumulate in the perinuclear region of hepatocytes. Subsequently, substantial amounts of both proteins can be found in purified recycling endosomes, indicating a potential resecretion of these TRL components. Pulse-chase experiments of perfused rat livers with radiolabeled TRLs demonstrated a serum-induced release of internalized apoE and LPL into the perfusate. Analysis of the secreted proteins identified approximately 80% of the recycled TRL-derived proteins in the high density lipoprotein fractions. These results provide the first evidence that recycling of TRL-derived apoE and LPL could play an important role in the modulation of lipoproteins in vivo.  相似文献   

4.
In vitro metabolism of apolipoprotein E   总被引:1,自引:0,他引:1  
Apolipoprotein E plays a major role in the uptake of chylomicrons and of very-low-density lipoprotein (VLDL) remnants by the liver. It has also been clearly demonstrated that apolipoprotein E rapidly and spontaneously exchanges between lipoproteins. To assess whether all lipoprotein-bound apolipoprotein E is available to participate in spontaneous transfer and/or exchange, the present study followed the fate of radiolabeled apolipoprotein E in an in vitro system. The results show that in vitro, apolipoprotein E can be considered as having both a spontaneously exchangeable pool and a nonexchangeable pool. Based upon specific radioactivity data, only a limited amount of apolipoprotein E originating in VLDL or in high-density lipoproteins (HDL) was capable of in vitro exchange with that in other lipoprotein fractions. Lipolysis of VLDL triacylglycerol by milk lipoprotein lipase, however, resulted in complete transfer of VLDL apolipoprotein E mass and radioactivity to HDL, supporting the potential for transformation of exchangeable apolipoprotein to a transferable pool in vivo. The results of these studies indicate that during the course of lipoprotein metabolism, conformational changes occur which alter the accessibility of apolipoprotein E. Such dynamic heterogeneity may have implications for the regulation of lipoprotein metabolism.  相似文献   

5.
Cysteine-arginine interchanges along the primary sequence of human plasma apolipoprotein E (apoE) play an important role in determining its biological functions due to a high mutation frequency of cytosine in CGX triplet that codes 33 of 34 apolipoprotein arginine residues. The contribution of apoE secondary structure to apolipoprotein-lipid interaction is described. The significance of apolipoprotein in triglyceride synthesis, lipoprotein lipolysis, and receptor-mediated clearance of lipolytic remnants of triglyceride-rich lipoproteins is discussed as well. The metabolic flow of lipoproteins in normo- and hypertriglyceridemia can be described by separate compartments that contribute to lipoprotein interaction with at least six different receptors: 1) low density lipoprotein (LDL) receptor; 2) LDL receptor-related protein (LRP); 3) apoB(48) macrophage receptor for hypertriglyceridemic very low density lipoproteins (VLDL); 4) scavenger receptors; 5) VLDL receptor; 6) lipolysis-stimulated receptor. The contribution of the exposure of apoE molecules on the surface of triglyceride-rich particles sensitive both to lipolysis and plasma triglyceride content to the interaction with LDL receptor and LRP is emphasized.  相似文献   

6.
Beta2-glycoprotein I has a high affinity for triglyceride-rich particles, activates lipoprotein lipase, and is also defined as an apolipoprotein H. Previous studies have shown that apolipoprotein H is a regular structural component of the major classes of lipoproteins. In view of these findings, we analyzed the interactions of apolipoprotein H with lipoproteins in the fasting plasma of eight normal, seven hypertriglyceridemic, and seven hypercholesterolemic subjects. After rate-zonal, density gradient ultracentrifugation, apolipoprotein H was little distributed among the different density fractions, and most of it was recovered in the last fraction that contained the lipoprotein-free plasma. A small percentage (4-13%) of the apolipoprotein H associated with plasma lipoproteins was detected at the density ranging from 1.090 to 1.225 g/ml. This result means that apolipoprotein H is little associated with lipoproteins.  相似文献   

7.
The present study was performed to investigate the effect of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and tissues of rats fed diets containing either coconut oil or fish oil as dietary fat, using a bifactorial experimental design. To ensure an adequate food intake, all the rats were force-fed by gastric tube. Experimental diets contained either 0.8 mg zinc/kg (zinc-deficient diets) or 40 mg zinc/kg (zinc-adequate diets). The effects of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and postprandial triglyceride concentrations and distribution of apolipoproteins in serum lipoproteins depended on the type of dietary fat. Zinc-deficient rats fed the coconut oil diet exhibited a reduced activity of lipoprotein lipase in postheparin serum and adipose tissue, markedly increased concentrations of triglycerides in serum, and a markedly reduced content of apolipoprotein C in triglyceride-rich lipoproteins and high density lipoproteins compared with zinc-adequate rats fed coconut oil. By contrast, zinc-deficient rats fed the fish oil diet did not exhibit reduced activities of lipoprotein lipase in postheparin serum and adipose tissue and increased concentrations of serum lipids compared with zinc-adequate rats fed the fish oil diet. This study suggests that a reduced activity of lipoprotein lipase might contribute to increased postprandial concentrations of serum triglycerides observed in zinc-deficient animals. However, it also demonstrates that the effects of zinc deficiency on lipoprotein metabolism are influenced by dietary fatty acids.  相似文献   

8.
PURPOSE OF REVIEW: Several lines of evidence suggest that postprandial lipemia increases the risk of atherogenesis, and in each of the systems involved in postprandial metabolism the roles of many genes have been explored in order to establish the possible implications of their variability in coronary heart disease risk. RECENT FINDINGS: This report focuses on recent results pertaining to postprandial lipoprotein metabolism and genes, their variability and their relationship with intermediate phenotypes and coronary heart disease. The postprandial lipid response was modified by polymorphisms within the genes for apolipoprotein AI, apolipoprotein E, apolipoprotein B, apolipoprotein CI, apolipoprotein CIII, apolipoprotein AIV, apolipoprotein AV, lipoprotein lipase, hepatic lipase, fatty acid-binding protein-2, the fatty acid transport proteins, microsomal triglyceride transfer protein and scavenger receptor class B type I. We also discuss recent advances in the effects of gene regulation using knockdown animal models on postprandial lipoprotein metabolism. SUMMARY: The review discusses several of these factors as well as the potential impact of gene polymorphism on the variability of postprandial lipoprotein metabolism as intermediate phenotypes for coronary heart disease. The variability in postprandial lipid response is highly complex. Future studies will need to be large if they are to assess the effects of multiple polymorphisms.  相似文献   

9.
1. Bovine lipoproteins were isolated from plasma by gel filtration and apolipoprotein composition determined by SDS-polyacrylamide gel electrophoresis. 2. Bovine triglyceride-rich lipoproteins contained a novel low mol. wt protein Mr = 22,000 and low mol. wt proteins that may be analogous to non-ruminant apolipoproteins A-I, A-IV, and E. 3. Apolipoprotein C appeared to be a minor constituent of bovine triglyceride-rich lipoproteins. 4. Triglyceride-rich lipoproteins contained two high mol. wt proteins of approx. Mr = 220,000 and 290,000. 5. The predominant bovine low density lipoprotein apolipoprotein was approx. Mr = 290,000, however, greater then 25 proteins were often observed between Mr = 110,000 and 370,000. 6. Bovine high density lipoprotein contained proteins analogous to apolipoprotein A-I and C apolipoproteins. 7. Differences in apolipoprotein profiles between non-lactating and lactating cows were not apparent.  相似文献   

10.
PURPOSE OF REVIEW: Type 2 diabetes frequently coincides with dyslipidemia, characterized by elevated plasma triglycerides, low high-density lipoprotein cholesterol levels and the presence of small dense low-density lipoprotein particles. Plasma lipid transfer proteins play an essential role in lipoprotein metabolism. It is thus vital to understand their pathophysiology and determine which factors influence their functioning in type 2 diabetes. RECENT FINDINGS: Cholesteryl ester transfer protein-mediated transfer is increased in diabetic patients and contributes to low plasma high-density lipoprotein cholesterol levels. Apolipoproteins A-I, A-II and E are components of the donor lipoprotein particles that participate in the transfer of cholesteryl esters from high-density lipoprotein to apolipoprotein B-containing lipoproteins. Current evidence for functional roles of apolipoproteins C-I, F and A-IV as modulators of cholesteryl ester transfer is discussed. Phospholipid transfer protein activity is increased in diabetic patients and may contribute to hepatic very low-density lipoprotein synthesis and secretion and vitamin E transfer. Apolipoprotein E could stimulate the phospholipid transfer protein-mediated transfer of surface fragments of triglyceride-rich lipoproteins to high-density lipoprotein, and promote high-density lipoprotein remodelling. SUMMARY: Both phospholipid and cholesteryl ester transfer proteins are important in very low and high-density lipoprotein metabolism and display concerted actions in patients with type 2 diabetes.  相似文献   

11.
We have used adenovirus-mediated gene transfer in mice to investigate low density lipoprotein receptor (LDLR) and LDLR-related protein (LRP)-independent mechanisms that control the metabolism of chylomicron and very low density lipoprotein (VLDL) remnants in vivo. Overexpression of receptor-associated protein (RAP) in mice that lack both LRP and LDLR (MX1cre(+)LRP(flox/flox)LDLR(-/-)) in their livers elicited a marked hypertriglyceridemia in addition to the pre-existing hypercholesterolemia in these animals, resulting in a shift in the distribution of plasma lipids from LDL-sized lipoproteins to large VLDL-sized particles. This dramatic increase in plasma lipids was not due to a RAP-mediated inhibition of a unknown hepatic high affinity binding site involved in lipoprotein metabolism, because no RAP binding could be detected in livers of MX1cre(+)LRP(flox/flox)LDLR(-/-) mice using both membrane binding studies and ligand blotting experiments. Remarkably, RAP overexpression also resulted in a 7-fold increase (from 13.6 to 95.6 ng/ml) of circulating, but largely inactive, lipoprotein lipase (LPL). In contrast, plasma hepatic lipase levels and activity were unaffected. In vitro studies showed that RAP binds to LPL with high affinity (K(d) = 5 nM) but does not affect its catalytic activity, in vitro or in vivo. Our findings suggest that an extrahepatic RAP-sensitive process that is independent of the LDLR or LRP is involved in metabolism of triglyceride-rich lipoproteins. There, RAP may affect the functional maturation of LPL, thus causing the accumulation of triglyceride-rich lipoproteins in the circulation.  相似文献   

12.
Apolipoprotein (apo)C-I and apoC-III are constituents of HDL and of triglyceride-rich lipoproteins that slow the clearance of triglyceride-rich lipoproteins by a variety of mechanisms. ApoC-I is an inhibitor of lipoprotein binding to the LDL receptor, LDL receptor-related protein, and VLDL receptor. It also is the major plasma inhibitor of cholesteryl ester transfer protein, and appears to interfere directly with fatty acid uptake. ApoC-III also interferes with lipoprotein particle clearance, but its principal role is as an inhibitor of lipolysis, both through the biochemical inhibition of lipoprotein lipase and by interfering with lipoprotein binding to the cell-surface glycosaminoglycan matrix where lipolytic enzymes and lipoprotein receptors reside. Variation in the expression of apoC-III has been credibly documented to have an important role in hypertriglyceridemia. Variation in the expression of apoC-I may also be important for hypertriglyceridemia under certain circumstances.  相似文献   

13.
A monoclonal antibody to apolipoprotein (apo) B-100 (JI-H) with unique binding properties has been used to separate a population of triglyceride-rich lipoproteins from blood plasma of normotriglyceridemic individuals and patients with various forms of hypertriglyceridemia. This antibody fails to recognize an apoE-rich population of very low density lipoproteins (VLDL) containing apoB-100 as well as all triglyceride-rich lipoproteins containing apoB-48, but it binds other VLDL that contain apoE and almost all lipoproteins that contain apoB-100, but no apoE. The unbound triglyceride-rich lipoproteins separated by ultracentrifugation after separation from plasma by immunoaffinity chromatography contained 10-13% of the apoB of triglyceride-rich lipoproteins from three normotriglyceridemic individuals, 10-29% of that from five patients with endogenous hypertriglyceridemia, 40-48% of that from three patients with familial dysbetablipoproteinemia, and 65% of that from a patient with lipoprotein lipase deficiency. In all cases, the unbound triglyceride-rich lipoproteins contained more molecules of apoE and cholesteryl esters per particle than those that were bound to monoclonal antibody JI-H, and they were generally depleted of C apolipoproteins. These properties resemble those described for partially catabolized remnants of chylomicrons and VLDL. The affinity of the unbound lipoproteins for the low density lipoprotein (LDL) receptor varied widely, and closely resembled that of the total triglyceride-rich lipoproteins from individual subjects. Our results demonstrate that remnant-like chylomicrons and a population of remnant-like VLDL can be isolated and quantified in blood plasma obtained in the postabsorptive state from normotriglyceridemic and hypertriglyceridemic individuals alike.  相似文献   

14.
Intracellular forms of chylomicrons, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) have previously been isolated from the rat intestine. These intracellular particles are likely to be nascent precursors of secreted lipoproteins. To study the distribution of intracellular apolipoprotein among nascent lipoproteins, a method to isolate intracellular lipoproteins was developed and validated. The method consists of suspending isolated enterocytes in hypotonic buffer containing a lipase inhibitor, rupturing cell membranes by nitrogen cavitation, and isolating lipoproteins by sequential ultracentrifugation. ApoB and apoA-I mass are determined by radioimmunoassay and newly synthesized apolipoprotein characterized following [3H]leucine intraduodenal infusion. Intracellular chylomicron, VLDL, low density lipoprotein (LDL), and HDL fractions were isolated and found to contain apoB, and apoA-IV, and apoA-I. In the fasted animal, less than 10% of total intracellular apoB and apoA-I was bound to lipoproteins and 7% of apoB and 35% of apoA-I was contained in the d 1.21 g/ml infranatant. The remainder of intracellular apolipoprotein was in the pellets of centrifugation. Lipid feeding doubled the percentage of intracellular apoA-I bound to lipoproteins and increased the percentage of intracellular apoB bound to lipoproteins by 65%. Following lipid feeding, the most significant increase was in the chylomicron apoB and HDL apoA-I fractions. These data suggest that in the fasting state, 90% of intracellular apoB and apoA-I is not bound to lipoproteins. Lipid feeding shifts intracellular apolipoprotein onto lipoproteins, but most intracellular apolipoprotein remains non-lipoprotein bound. The constant presence of a large non-lipoprotein-bound pool suggests that apolipoprotein synthesis is not the rate limiting step in lipoprotein assembly or secretion.  相似文献   

15.
Hepatic triacylglycerol levels are governed through synthesis, degradation and export of this lipid. Here we demonstrate that enforced expression of hepatic lipase in the endoplasmic reticulum in McArdle RH7777 hepatocytes resulted in a significant decrease in the incorporation of fatty acids into cellular triacylglycerol and cholesteryl ester accompanied by attenuation of secretion of apolipoprotein B-containing lipoproteins. Hepatic lipase-mediated depletion of intracellular lipid storage increased the expression of peroxisome proliferator-activated receptor α and its target genes and augmented oxidation of fatty acids. These data show that 1) hepatic lipase is active in the endoplasmic reticulum and 2) intracellular hepatic lipase modulates cellular lipid metabolism and lipoprotein secretion.  相似文献   

16.
Statins are hypolipidemic drugs which not only improve cholesterol but also triglyceride levels. Whereas their cholesterol-reducing effect involves inhibition of de novo biosynthesis of cellular cholesterol through competitive inhibition of its rate-limiting enzyme 3-hydroxy-3-methylglutaryl CoA reductase, the mechanism by which they lower triglycerides remains unknown and forms the subject of the current study. Treatment of normal rats for 4 days with simvastatin decreased serum triglycerides significantly, whereas it increased high density lipoprotein cholesterol moderately. The decrease in triglyceride concentrations after simvastatin was caused by a reduction in the amount of very low density lipoprotein particles which were of an unchanged lipid composition. Simvastatin administration increased the lipoprotein lipase mRNA and activity in adipose tissue and heart. This effect on lipoprotein lipase was accompanied by decreased mRNA as well as plasma levels of the lipoprotein lipase inhibitor apolipoprotein C-III. These results suggest that the triglyceride-lowering effect of statins involves a stimulation of lipoprotein lipase-mediated clearance of triglyceride-rich lipoproteins.  相似文献   

17.
Growing clinical evidence suggests that metabolic behavior and atherogenic potential vary within lipoprotein subclasses that can be defined by apolipoprotein variation. Variant constituency of apolipoproteins B and E (apoB and apoE) may be particularly important because of the central roles of these apolipoproteins in the endogeneous lipid delivery cascade. ApoB is the sole protein of low-density lipoprotein (LDL), and like LDL cholesterol, the plasma apoB level has been positively correlated with risk for atherosclerotic disease. ApoE is a major functional lipoprotein in the triglyceride-rich lipoproteins, and may be crucial in the conversion of very low density lipoprotein (VLDL) to LDL. Based on work by others that enabled the quantititation of apoB-containing particles by content of up to two other types of apolipoprotein, we have developed a method for determining the amount of apoE in apoB-containing lipoproteins (Lp B:E) and the amount of apoB in apoE-containing lipoproteins (Lp E:B). From the Lp B:E and Lp E:B concentrations, the molar ratio of apoE to apoB in lipoproteins containing apoB and/or apoE in plasma can be determined. The methodology is fast, specific, and sensitive and should prove extremely useful in further categorizing lipoproteins and characterizing their behavior. In applying this method to clinical groupings of normo- and hyperlipidemia, we found that the plasma triglyceride level correlated with the apoE and Lp B:E concentrations in plasma, while the total cholesterol level correlated with the apoB and Lp E:B levels.  相似文献   

18.
The mechanism of inhibition by apolipoprotein C of the uptake and degradation of triglyceride-rich lipoproteins from human plasma via the low density lipoprotein (LDL) receptor pathway was investigated in cultured human skin fibroblasts. Very low density lipoprotein (VLDL) density subfractions and intermediate density lipoprotein (IDL) with or without added exogenous recombinant apolipoprotein E-3 were used. Total and individual (C-I, C-II, C-III-1, and C-III-2) apoC molecules effectively inhibited apoE-3-mediated cell metabolism of the lipoproteins through the LDL receptor, with apoC-I being most effective. When the incubation was carried out with different amounts of exogenous apoE-3 and exogenous apoC, it was shown that the ratio of apoE-3 to apoC determined the uptake and degradation of VLDL. Excess apoE-3 overcame, at least in part, the inhibition by apoC. ApoC, in contrast, did not affect LDL metabolism. Neither apoA-I nor apoA-II, two apoproteins that do not readily associate with VLDL, had any effect on VLDL cell metabolism. The inhibition of VLDL and IDL metabolism cannot be fully explained by interference of association of exogenous apoE-3 with or displacement of endogenous apoE from the lipoproteins. IDL is a lipoprotein that contains both apoB-100 and apoE. By using monoclonal antibodies 4G3 and 1D7, which specifically block cell interaction by apoB-100 and apoE, respectively, it was possible to assess the effects of apoC on either apoprotein. ApoC dramatically depressed the interaction of IDL with the fibroblast receptor through apoE, but had only a moderate effect on apoB-100. The study thus demonstrates that apoC inhibits predominantly the apoE-3-dependent interaction of triglyceride-rich lipoproteins with the LDL receptor in cultured fibroblasts and that the mechanism of inhibition reflects association of apoC with the lipoproteins and specific concentration-dependent effects on apoE-3 at the lipoprotein surface.  相似文献   

19.
After internalization of triglyceride-rich lipoproteins (TRL) in hepatoma cells, TRL particles are immediately disintegrated in the early endosomal compartment. This involves the targeting of lipids and apoprotein B along the degradative pathway and the recycling of TRL-derived apoE through recycling endosomes. Re-secretion of apoE is accompanied by the concomitant association of apoE and cellular cholesterol with high-density lipoproteins (HDL). Since epidemiological data showed that apoE3 and apoE4 have differential effects on HDL metabolism, we investigated whether the intracellular processing of TRL-derived apoE4 differs from apoE3-TRL. In this study, we demonstrated by radioactive and immunofluorescence uptake experiments that cell-surface binding and internalization of TRL-derived apoE4 are increased compared with apoE3 in hepatoma cells. Pulse-chase experiments revealed that HDL-induced recycling, but not disintegration and degradation, of apoE4-enriched TRL is strongly reduced in these cells. Furthermore, impaired HDL-induced apoE4 recycling is associated with reduced cholesterol efflux. Studies performed in Tangier fibroblasts showed that apoE recycling does not depend on ATP-binding cassette transporter A1 activity. These studies provide initial evidence that impaired recycling of apoE4 could interfere with intracellular cholesterol transport and contribute to the pathophysiological lipoprotein profile observed in apoE4 homozygotes.  相似文献   

20.
Guha M  Gursky O 《Biochemistry》2010,49(44):9584-9593
Very low density lipoproteins (VLDL) are triglyceride-rich precursors of low-density lipoproteins (LDL) and a risk factor for atherosclerosis. The effects of oxidation on VLDL metabolism may be pro- or antiatherogenic. To understand the underlying biophysical basis, we determined the effects of copper (that preferentially oxidizes lipids) and hypochlorite (that preferentially oxidizes proteins) on the heat-induced VLDL remodeling. This remodeling involves VLDL fusion, rupture, and fission of apoE-containing high-density lipoprotein- (HDL-) like particles; HDL with similar size, density, and protein composition are formed upon VLDL remodeling by lipoprotein lipase, a key enzyme in triglyceride metabolism. Circular dichroism, turbidity, and electron microscopy show that mild oxidation promotes VLDL fusion and rupture, while advanced oxidation hampers these reactions. VLDL destabilization upon moderate oxidation results, in part, from the exchangeable apolipoprotein modifications, including proteolysis and limited cross-linking. VLDL stabilization against fusion and rupture upon advanced oxidation probably results from massive protein cross-linking on the particle surface. Electron microscopy and gel electrophoresis reveal that oxidation promotes fission of apoE-containing HDL-size particles; hydrolysis of apolar core lipids probably contributes to this effect. Copper and hypochlorite have similar effects on VLDL remodeling, suggesting that these effects may be produced by other oxidants. In summary, moderate oxidation that encompasses in vivo conditions destabilizes VLDL and promotes fission of HDL-size particles. Consequently, mild oxidation may be synergistic with lipoprotein lipase reaction and, hence, may help to accelerate VLDL metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号