首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable.  相似文献   

2.
Tsukaya H  Shoda K  Kim GT  Uchimiya H 《Planta》2000,210(4):536-542
 Heteroblasty in Arabidopsis thaliana was analyzed in a variety of plants with mutations in leaf morphology using a tissue-specific β-glucuronidase gene marker. Some mutants exhibited their mutant phenotypes specifically in foliage leaves. The phenotypes associated with the foliage-leaf-specific mutations were also found to be induced ectopically in cotyledons in the presence of the lec1 mutation. Moreover, the features of an emf1lec1 double mutant showed that cotyledons can be partially converted into carpelloids. When heteroblastic traits were examined in foliage leaves in the presence of certain mutations or natural deviations by histochemical analysis of the expression of the tissue-specific marker gene, it was found that ectopic expression of the developmental program for the first foliage leaves in lec1 cotyledons seemed to affect the heteroblastic features of the first set of foliage leaves, while foliage leaves beyond the third position appeared normal. Similarly, in wild-type plants, discrepancies in heteroblastic features, relative to standard features, of foliage leaves at early positions seemed to be eliminated in foliage leaves at later positions. These results suggest that heteroblasty in foliage leaves might be affected in part by the heteroblastic stage of the preceding foliage leaves but is finally controlled autonomously at each leaf position. Received: 9 July 1999 / Accepted: 17 August 1999  相似文献   

3.
4.
5.
Zusammenfassung In biometrischen Untersuchungen zur Genetik quantitativer Merkmale wird bisher weitgehend das Problem der Genregulation übersehen. Chlorophyll b-Defektmutanten der Crucifere Arabidopsis thaliana (L.) Heynh. erlauben eine direkte biochemische und physiologische Prüfung ihrer quantitativen Genwirkungen in der Biosynthesekette der Plastidenpigmente. Auf Grund bestimmter Testkreuzungen zwischen zwei Mutanten und der Normalform sowie eines kombinierten Verfahrens zur phänotypischen Klassifizierung bestehend aus präparativer Dünnschichtchromatographie aller Plastidenpigmente, visueller Blattfarbenbonitur, papierchromatographischem Einzelpflanzentest und quantitativer Pigmentmessung der Linien werden in Übereinstimmung mit anderen Autoren die nachweisbaren Genotypen einer Allelenreihe ch+, ch1 und ch2 des ch-Locus zugeordnet. ch1/ch1 blockiert die Chlorophyll b-Synthese vollständig, ch2/ch2 nur etwa zu 90% gegenüber dem Wildtyp und in der Heterozygote ch2/ch1 wird offenbar die Blockade durch komplementative Effekte noch stärker aufgehoben (Superdominanz des ch2- über das ch1-Allel). Die in den Spaltungsgenerationen erhöhten Chlorophyll- und Carotinoid-Varianzen aller Genotypen gegenüber den Eltern weisen auf einen evtl. polygenen Hintergrund der Gesamtpigmentbildung hin, dessen physiologischer Wirkungsbereich aber relativ zu dem des Hauptgens ch begrenzt ist. Orientierende In-vitro-Versuche ergeben, daß im plastidenfreien Blattgewebe-Extrakt des Wildtyps ch+/ch+ ein Wirkstoffprinzip vorhanden ist, das belichtete Chloroplasten der in vivo pigmentdefekten Genotypen ch1/ch1 und ch2/ch2 zur Chlorophyll b-Synthese befähigt. Weiterführende Aussagen über Art, Umfang und Zeitpunkt der hierbei angenommenen Enzymaktivitäts- bzw. Substratsänderungen werden von Versuchen mit variierten Strahlungsbedingungen und verbesserten Nachweismethoden der Pigmentvorstufen erwartet.
Physiological genetics of quantitative characters in Arabidopsis thaliana (L.) Heynh.Part 1: segregation and biosynthesis of pigments in chlorophyll-b defect mutants
Summary In biometric studies on the genetics of quantitative characters the problem of regulation of the activity of genes is rarely considered. Mutants of Arabidopsis thaliana (L.) Heynh. (Cruciferae), defective for chlorophyll b, permit a direct biochemical and physiological determination of their quantitative gene effects in the biosynthetic pathway of the plastid pigments. In agreement with other authors, the detectable genotypes are found to be based on multiple alleles (ch+, ch1 and ch2) at the ch locus. This evidence was obtained by test crosses of two mutants with the wild type and by a phaenotypic classification of the progeny on the basis of preparatory thin layer chromatography, paper chromatography tests of single plants, and quantitative spectrophotometry of the lines. In ch1/ch1 the synthesis of chlorophyll b is completely blocked, in ch2/ch2 only about 10 percent of the wild-type pigment is present, and in the heterozygote ch2/ch1 a complementation effect is observed (i. e. superdominance of ch2 over ch1) resulting in still more pigment production. In the segregating generations the variances for chlorophyll and carotinoids of all the genotypes are higher than in the parents and therefore suggest a possible polygenic background for pigment development. However, the physiological effect of the genetic background is slight as compared with the effect of the major gene ch. Preliminary experiments show that in tissue extracts of wild type leaves (ch+/ch+) there is an effective agent which enables irradiated chloroplasts of the defective ch1/ch1 and ch2/ch2 genotypes to synthesize chlorophyll b in vitro. Further information on the mechanism, extent and the time of action of the active agent should be obtained by varying the conditions of irradiation and by refining the tests for pigment precursors.


Die pigmentphysiologischen Untersuchungen wurden durch eine. Sachbeihilfe der Deutschen Forschungsgemeinschaft unterstützt.  相似文献   

6.
7.
8.
Despite the availability of many mutants for signal transduction, Arabidopsis thaliana guard cells have so far not been used in electrophysiological research. Problems with the isolation of epidermal strips and the small size of A. thaliana guard cells were often prohibiting. In the present study these difficulties were overcome and guard cells were impaled with double-barreled microelectrodes. Membrane-potential recordings were often stable for over half an hour and voltage-clamp measurements could be conducted. The guard cells were found to exhibit two states. The majority of the guard cells had depolarized membrane potentials, which were largely dependent on external K+ concentrations. Other cells displayed spontaneous transitions to a more hyperpolarized state, at which the free-running membrane potential (Em) was not sensitive to the external K+ concentration. Two outward-rectifying conductances were identified in cells in the depolarized state. A slow outward-rectifying channel (s-ORC) had properties resembling the K+-selective ORC of Vicia faba guard cells (Blatt, 1988, J Membr Biol 102: 235–246). The activation and inactivation times and the activation potential, all depended on the reversal potential (Erev) of the s-ORC conductance. The s-ORC was blocked by Ba2+ (K1/2 = 0.3–1.3mM) and verapamil (K1/2 = 15–20 μM). A second rapid outward-rectifying conductance (r-ORC) activated instantaneously upon stepping the voltage to positive values and was stimulated by Ba2+. Inward-rectifying channels (IRC) were only observed in cells in the hyperpolarized state. The activation time and activation potential of this channel were not sensitive to the external K+ concentration. The slow activation of the IRC (t1/2 ≈ 0.5 s) and its negative activation potential (Vthreshold = −155 mV) resemble the values found for the KAT1 channel expressed in Saccharomyces cerevisiae (Bertl et al., 1995, Proc Natl Acad Sci USA 92: 2701–2705). The results indicate that A. thaliana guard cells provide an excellent system for the study of signal transduction processes. Received: 28 March 1996 / Accepted: 11 November 1996  相似文献   

9.
Differentiation of sclereids was induced in the pith of Arabidopsisthaliana by repeated cutting of developing inflorescences for4 weeks. This is the first report of sclereids in A. thaliana.The treatment also resulted in large rosettes and enhanced cambialactivity that formed considerable amounts of secondary xylem. Key words: Arabidopsis thaliana, cambial activity, differentiation, sclereids, secondary xylem  相似文献   

10.
11.
Photosynthesis is known to provide nearly all the carbon and chemical energy needed for plant growth, it depends on many environmental factors and alternates when these factors fluctuate. The degree of the chloroplast membrane system development can be, to a certain extent, an indicator of the organelles' photosynthetic activity. To-date, changes in chloroplast size and ultrastructure as well as starch and pigment content in leaf mesophyll cells in microgravity have been found in variety of the angiosperm species investigated in this respect. However, available data are very limited and contradictory. Taking into account the importance of studying the photosynthesis process to elucidate the possibilities of plant physiological adaptation in altered gravity that is the basis for working out the technologies of space planting in controlled ecological life-support systems, we conducted the investigations of ultrastructure and state of the photosynthetic apparatus in Arabidopsis thaliana leaf mesophyll cells at the different stages of plant development under clinorotation.  相似文献   

12.
pho3: a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh   总被引:1,自引:0,他引:1  
Zakhleniuk OV  Raines CA  Lloyd JC 《Planta》2001,212(4):529-534
A novel P-deficient mutant of Arabidopsis thaliana, pho3, was isolated by screening for root acid phosphatase (APase) activity in plants grown under low-P conditions. pho3 had 30% less APase activity in roots than the wild type and, in contrast to wild-type plants, root APase activity did not increase in response to growth in low P. However, shoot APase activity was higher in pho3 than in the wild-type plants. In addition, the pho3 mutant had a P-deficient phenotype, even when grown in P-sufficient conditions. The total P content of 11-d-old pho3 plants, grown in agar media with a plentiful supply of P, was about 25% lower than the wild-type level in the shoot, and about 65% lower in the roots. In the rosette leaves of mature soil-grown pho3 plants the total P content was again reduced, to about 50% of wild-type levels. pho3 exhibited a number of characteristics normally associated with low-P stress, including severely reduced growth, increased anthocyanin content (at least 100-fold greater than the wild type in soil-grown plants) and starch accumulation. The results suggest that the mutant is unable to respond to low internal P levels, and may lack a transporter or a signalling component involved in regulating P nutrition. Received: 21 March 2000 / Accepted: 15 August 2000  相似文献   

13.
Plant hormones are considered to be the key factors involved in triggering in vitro induced plant morphogenesis, including somatic embryogenesis (SE). Mutants affected in SE and altered in hormonal response therefore provide valuable material for genetic research on in vitro induced plant embryogenesis. The capacity for SE was studied in 27 mutants with defects in response to different plant hormones: auxin, ABA, gibberellin and cytokinin, and evaluated in 2-week-old mutant and wild-type cultures in terms of their efficiency and productivity. SE was induced in vitro via a direct morphogenic pathway, through the culture of immature zygotic embryos on standard solid medium with 5 μM 2,4-D. The majority of the analyzed mutants displayed a significantly impaired capacity for SE; and those affected belonged to several different hormone-defective groups, including forms affected in auxin (axr4), gibberellin (ga) and ABA (abi, hyl1, cpb20, abh1) response. These mutants showed a significant decrease in embryogenic response as manifested by a low efficiency and/or productivity of SE. Additionally, SE efficiency was analyzed for axr4-1 mutant on media supplemented with different auxins while GA3 and inhibitors of gibberellins (uniconazol P and paclobutrazol), were applied for pkl1-1-mutant. The selected mutants provide a valuable research tool for studying the molecular mechanisms determining the induction of embryogenesis in cultures of somatic tissues. Their usefulness in further studies is discussed.  相似文献   

14.
An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol-1) with 0.35 mmol mol-1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol-1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis.  相似文献   

15.
The effects of sinusoidal vibration (40-120 Hz, amplitude equal to or smaller than 0.42 mm) on seed germination of Arabidopsis thaliana were examined. When the amplitude of vibration was fixed at 0.42 mm, vibration with frequencies higher than 70 Hz increased the rate of seed germination. When the frequency of vibration was fixed at 100 Hz, vibration with amplitudes larger than 0.33 mm also increased the rate of germination. The increase in the rate of germination appeared dependent on acceleration calculated from the frequency and amplitude of vibration. Vibration with a maximum acceleration of 70 m s(-2) increased the rate of germination, but the promotive effects leveled off at higher accelerations. Vibration had little effect on seed germination in a starch-deficient mutant, pgm. Thus, the amyloplasts appeared to act as a susceptor that senses mechanical vibrations. No vibration-induced promotion of germination was seen in an ethylene-insensitive mutant, etr1, or in the wild type in the presence of aminoethoxyvinylglycine, an inhibitor of ethylene synthesis, suggesting that vibration increased the rate of seed germination through the action of ethylene.  相似文献   

16.
The genetic structure of ten natural populations of Arabidopsis thaliana (L.) Heynh. at eight isozyme loci was studied. The populations were located in the northern part of the species range, 200 km from the north to the south along the Onega Lake coast in Karelia. Considerable genetic diversity (P99% = 43.7, Hobs = 0.003) was revealed that is not typical of populations of self-pollinating plant species. A direct correlation between the proportion of polymorphic loci and geographical latitude was shown (r = 0.68; P < 0.05). It is suggested that a high polymorphism level in Karelian Arabidopsis thaliana (L.) populations increasing from the south to the north is due to extreme environmental conditions in the northern part of the species range. The distribution of genetic diversity within and between populations is typical of self-pollinating species: the larger part of the total diversity resides among populations (GST = 0.583).  相似文献   

17.
Plant cold acclimation is correlated to expression of low-temperature-induced (lti) genes. By using a previously characterized lti cDNA clone as a probe we isolated a genomic fragment that carried two closely located lti genes of Arabidopsis thaliana. The genes were structurally related with the coding regions interrupted by three similarly located short introns and were transcribed in the same direction. The nucleotide sequences of the two genes, lti78 and lti65, predict novel hydrophilic polypeptides with molecular weights of 77856 and 64510, respectively, lti78 corresponding to the cDNA probe. Of the 710 amino acids of LTI78 and 600 amino acids of LTI65, 346 amino acids were identical between the polypeptides, which suggests that the genes may have a common origin.Both lti78 and lti65 were induced by low temperature, exogenous abscisic acid (ABA) and drought, but the responsiveness of the genes to these stimuli was markedly different. Both the levels and the temporal pattern of expression differed between the genes. Expression of lti78 was mainly responsive to low temperature, that of lti65 to drought and ABA. In contrast to the induction of lti78, which follows separate signal pathways during low-temperature, ABA and drought treatment, the drought induction of lti65 is ABA-dependent and the low-temperature induction appears to be coupled to the ABA biosynthetic pathway. This differential expression of two related genes may indicate that they have some-what different roles in the stress response.  相似文献   

18.
The genetic structure of ten natural populations of Arabidopsis thaliana (L.) Heynh. at eight isozyme loci was studied. The populations were located in the northern part of the species range, 200 km from the north to the south along the Onega Lake coast in Karelia. Considerable genetic diversity (P 99% = 43.7, H obs = 0.003) was revealed that is not typical of populations of self-pollinating plant species. A direct correlation between the proportion of polymorphic loci and geographical latitude was shown (r = 0.68; P < 0.05). It is suggested that a high polymorphism level in Karelian Arabidopsis thaliana (L.) populations increasing from the south to the north is due to extreme environmental conditions in the northern part of the species range. The distribution of genetic diversity within and between populations is typical of self-pollinating species: the larger part of the total diversity resides among populations (G ST = 0.583).  相似文献   

19.
The activity of lipoxygenase (EC 1.13.11.12) in Arabidopsis thaliana (L.) Heynh seedlings and mature plants was estimated spectrophotometrically at 234 nm. Linoleic acid was used as a substrate. Lipoxygenase activity showed two pH optima: at 7.0 and 10.0 in seedlings, and at pH 8.0 and 10.0 in leaves of mature plants. Seven-week-old plants were transferred to a hydroponic system and treated with different concentrations of Cd(2+) or Cu(2+) [in microM]: 0, 5, 25, 50, 100 for 7 days. The lipoxygenase activities at pH 8.0 and 10.0 depended on the metal that was added to the nutrient solution. The main change in lipoxygenase activity was under Cd(2+)stress at pH 8.0 and under Cu(2+)excess at pH 10.0.  相似文献   

20.
The catalase multigene family in Arabidopsis includes three genes encoding individual subunits that associate to form at least six isozymes that are readily resolved by nondenaturing gel electrophoresis. CAT1 and CAT3 map to chromosome 1, and CAT2 maps to chromosome 4. The nucleotide sequences of the three coding regions are 70 to 72% identical. The amino acid sequences of the three catalase subunits are 75 to 84% identical and 87 to 94% similar, considering conservative substitutions. Both the individual isozymes and the individual subunit mRNAs show distinct patterns of spatial (organ-specific) expression. Six isozymes are detected in flowers and leaves and two are seen in roots. Similarly, mRNA abundance of the three genes varies among organs. All three mRNAs are highly expressed in bolts, and CAT2 and CAT3 are highly expressed in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号