首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endodermis and shoot gravitropism   总被引:7,自引:0,他引:7  
Shoots and roots of higher plants exhibit negative and positive gravitropism, respectively. A variety of gravitropic mutants have recently been isolated from Arabidopsis, the characterization of which demonstrates that the molecular mechanisms of the gravitropic responses in roots, hypocotyls and inflorescence stems are different. The cytological and molecular analysis of two mutants, shoot gravitropism 1 (sgrl), which is allelic to scarecrow (scr), and sgr7, which is allelic to short-root(shr), indicate that the endodermis is the site of gravity perception in shoots. These data suggest a new model for shoot gravitropism.  相似文献   

2.
The ability of a plant to respond to gravity is crucial for growth and development throughout the life cycle. A key player in the cellular mechanisms of gravitropism is ARG1 (altered response to gravity), a DnaJ-like protein that associates with components of the vesicular trafficking pathway and carries a C-terminal domain with similarities to cytoskeleton-associated proteins. The arg1-2 mutant of Arabidopsis thaliana has reduced and delayed gravitropism in roots, shoots, and inflorescence stems when grown in the light or dark. We performed light microscopic studies of plastid movement in the gravity-perceiving statocytes (endodermal cells) of hypocotyls of arg1-2 and WT light-grown seedlings following reorientation to better characterize the role of ARG1 in gravitropism. Cryofixation/freeze substitution procedures were used because they provide a reliable indication of rapid cellular events within the statocytes. Our results suggest that ARG1 affects gravitropism by reducing plastid movement/sedimentation, a process known to be essential for early phases of signaling cascades in the statocytes.  相似文献   

3.
4.
The sites of gravity perception are columella cells in roots and endodermal cells in hypocotyls and inflorescence stems. Since plastids are likely to play a role in graviperception, we investigated gravitropism in plastid mutants of Arabidopsis . Previous studies have shown that the arc 6 and arc 12 ( a ccumulation and r eplication of c hloroplasts) mutants have an average of two large plastids per leaf mesophyll cell. In this study, we found that these arc mutants have altered plastid morphology throughout the entire plant body, including the cells involved in gravity perception. There were no major differences in total starch content per cell in endodermal and columella cells of the wild-type (WT) compared to arc 6 and arc 12 as assayed by iodine staining. Thus, the total mass of plastids per cell in arc 6 and arc 12 is similar to their respective WT strains. Results from time course of curvature studies demonstrated that the plastid mutation affected gravitropism only of inflorescence stems and hypocotyls, but not roots. Thus, roots appear to have different mechanisms of gravitropism compared to stems and hypocotyls. Time course of curvature studies with light-grown seedlings were performed in the presence of latrunculin B (Lat-B), an actin-depolymerizing drug. Lat-B promoted gravitropic curvature in hypocotyls of both the WT and arc 6 but had little or no effect on gravitropism in roots of both strains. These results suggest that F-actin is not required for hypocotyl gravitropism.  相似文献   

5.
Kondo A  Kaikawa J  Funaguma T  Ueno O 《Planta》2004,219(3):500-506
Plants have evolved various photoprotective mechanisms to mitigate photodamage. Here we report the diurnal movement of chloroplasts in the leaves of succulent crassulacean acid metabolism (CAM) plants under combined light and water stress. In leaves of water-stressed plants, the chloroplasts became densely clumped in one or sometimes two areas in the cytoplasm under light and dispersed during darkness. The chloroplast clumping resulted in leaf optical changes, with a decrease in absorptance and an increase in transmittance. The plant stress hormone abscisic acid induced chloroplast clumping in the leaf cells under light. We suggest that the marked chloroplast movement in these CAM plants is a photoprotective strategy used by the plants subjected to severe water stress.Abbreviations ABA Abscisic acid - CAM Crassulacean acid metabolism  相似文献   

6.
长期弱光对苦草幼苗生长发育的影响   总被引:1,自引:0,他引:1  
谢云成  李强  王国祥 《生态学杂志》2012,31(8):1954-1960
用遮光法研究弱光(5%、1%、0.5%、0.1%全光照)对苦草幼苗生长发育的影响,统计了苦草的生物学参数,测定了叶片叶绿素荧光参数。结果表明:1)0.1%组无新株萌发,随着实验时间的延长其余组新株萌发逐渐被抑制。2)随着实验时间增加和光照强度降低,老株叶片形成受到的抑制程度呈增大趋势;前20d时新株叶片形成未被抑制,但随着实验时间延长显著被抑制。3)老株、新株的叶宽均受到显著抑制。4)老株叶片的伸长显著被抑制,且随着光强降低叶片伸长的幅度呈显著降低趋势;前20天时新株叶长被促进,随着实验时间延长叶片伸长显著被抑制。5)随实验天数的增加,老株叶片光化学最大量子产量(Fv/Fm)呈显著降低趋势,第80天时相对电子传递速率(rETR)和非光化学淬灭(NPQ)显著降低。6)新、老植株根、茎、叶的鲜重均显著低于对照,且随着光照强度降低老株的茎重/株重和根重/株重呈增加趋势,而叶重/株重呈显著的降低趋势。第80天时苦草植株仍具有一定的光合能力,地下茎的生物量比例较高,因此,≤1%全光照下苦草植株具有较强的耐受能力。  相似文献   

7.
The growth of the primary leaves of Phaseolus vulgaris L. was enhanced greatly by decapitation of the rest of the shoot. This increased growth was manifested by an increase in leaf area, leaf weight, and in a higher synthesis of chlorophyll and soluble proteins. Within the roots and stems decapitation resulted in a detectable increase in the endogenous cytokinins within 2 days after the surgical treatment. In the primary leaves increased cytokinin levels were only detected after 16 days. At this time most of the recorded activity co-chromatographed with the cytokinin glucosides. When plants which were decapitated were left under normal growing conditions for 16 days and then transferred to continuous darkness for 8 days the senescence of the primary leaves of the decapitated plants, in which the cytokinins had increased, was delayed significantly when compared with that of the primary leaves of the intact plants. the significance of these findings is discussed.  相似文献   

8.
9.
The effect of clipping height on ryegrass regrowth was investigated by examining the roles of several plant hormones. Our study consisted of three treatment conditions: (1) darkness over whole plants, (2) darkness only over stubble leaf sheaths, and (3) light over whole plants. Results showed that under darkness over whole plant, low stubble height resulted in low leaf regrowth biomass. Similar leaf regrowth biomass was observed under conditions of darkness only over stubble leaf sheaths as well as light over whole plants. Each unit weight of stubble at different clipping heights has relatively similar potential of providing stored organic substance for leaf regrowth. Therefore, regrowth index, calculated as newly grown leaf biomass divided by unit stubble weight, was used to evaluate regrowth capacity at different clipping heights under minimal influence of organic substances stored in stubbles. Under light over whole plants and single clipping, low stubble height and high stubble height with root thinning resulted in low leaf biomass and high regrowth index. On the other hand, under light over whole plants and frequent clipping high leaf biomass and regrowth index were observed in high stubble height. In addition, we found that leaf zeatin and zeatin riboside (Z + ZR) affected ryegrass regrowth and that roots regulated leaf Z + ZR concentration. Thus, our results indicate that root-derived cytokinin concentration in leaves influences ryegrass regrowth at different clipping heights.  相似文献   

10.
Diurnal patterns of nonstructural carbohydrate (starch, sucrose, and hexose sugars) concentration were characterized in different parts (leaves, petioles, stems, and roots) of vegetative soybean (Glycine max [L.] Merr.) plants. Pronounced changes in all carbohydrate pools were observed in all plant parts during the normal photosynthetic period; however, starch accumulation within leaves accounted for more than 80% of the nonstructural carbohydrate accumulated by the plant during the light period. Efficiency of utilization of starch and sucrose during the normal dark period differed among organs, with leaves being most efficient in mobilizing starch reserves and roots being most efficient in utilizing sucrose reserves. The vast majority (about 85%) of the whole plant carbohydrate reserves present at the end of the photosynthetic period were utilized during the normal dark period. Sink leaf expansion ceased in plants transferred to extended darkness and the cessation in leaf expansion corresponded with carbohydrate depletion in the subtending source leaf and the remainder of the plant. Collectively, the results indicated that under the conditions employed, leaves are the whole plant's primary source of carbon at night as well as during the day.  相似文献   

11.
BACKGROUND AND AIMS: It is well known that plant aerial development is affected by light intensity in terms of the date of flowering, the length of stems and petioles, and the final individual leaf area. The aim of the work presented here was to analyse how shade-induced changes in leaf development occur on a dynamic basis from the whole rosette level to that of the cells. METHODS: Care was taken to ensure that light intensity was the only source of micro-meteorological variation in the study. The dynamics of leaf production, rosette expansion, individual leaf area expansion and epidermal cell expansion were analysed in Arabidopsis thaliana plants grown under two light intensities in three independent experiments. KEY RESULTS: The total area of rosette leaves was reduced by the shading treatment. Both the number of leaves produced and their individual leaf areas were reduced. The reduction in leaf number was associated with a reduction in leaf initiation rate and the duration of the phase of leaf production. The reduction in individual leaf area was associated with a reduction in leaf expansion rate and an increase in the duration of leaf expansion. The changes in leaf expansion dynamics were accompanied by a decrease in epidermal cell number which was partly compensated for by an increase in epidermal cell area. Overall, the whole rosette leaf expansion rate was reduced by shading, whereas the total duration of rosette leaf expansion was unaffected. This was mainly due to the accumulation of the increases in the durations of expansion of each individual leaf which was associated with an increase in cell expansion. CONCLUSIONS: The dynamic analysis presented here reveals a new shade-adaptative response mediated via the control of area expansion at the cell, organ and whole plant levels.  相似文献   

12.
13.
Physiological and morphological differences between Plantago major L. (Plantaginaceae) growing in full sunlight and shaded conditions were examined. Photosynthesis of isolated leaves was saturated by irradiance around 300 μE m−-2 sec−-1 and 170 μE m−-2 sec−-1, respectively. In contrast to previous studies of sun/shade leaf responses, initial slopes of curves from shaded plants are significantly less than those taken from full-sun plants. Within the 400–500 nm and 600–700 nm ranges, leaves 5.0 cm or longer are essentially opaque, transmitting less than 1.25% of incident light. Chlorophyll content per unit leaf area is nearly equivalent for leaves from plants growing under the two extremes in light levels. Morphometric comparisons indicate shaded plants bear fewer leaves, have less leaf overlap, lower total leaf area, and longer petioles than full-sun plants. Leaf elongation rates are lower and the duration between the emergence of successive leaves is longer in shaded plants. Computer analyses of both types of rosette morphology reveal shaded plants have an equal or greater capacity to intercept light than full-sun plants, principally because of the minimization of leaf overlap and the large variation in the deflection angles of leaves in shaded rosette morphologies. Simulations, calculated on the basis of light interception, and taking into account the transition between photosynthate-importing and -exporting leaves, predict relative growth rates for full-sun and shaded rosette morphologies that are in reasonable agreement with empirically determined leaf growth rates. However, the data indicate that significant physiological and morphological differences exist among leaves from a single rosette, and among developmentally comparable leaves from rosettes growing under different ambient light environments. Differences among leaves on a single plant must be accommodated in computerized techniques attempting to simulate light interception and its consequences on potential growth rates.  相似文献   

14.
As a rosette plant, Arabidopsis thaliana forms leaves near to the ground, which causes the plant to be vulnerable to shading by neighbours. One mechanism to avoid such shading is the regulation of leaf inclination, such that leaves can be raised to more vertical orientations to prevent neighbouring leaves from overtopping them. Throughout Arabidopsis rosette development, rosette leaves move to more vertical orientations when shaded by neighbouring leaves, exposed to low light levels or placed in the dark. After dark-induced reorientation of leaves, returning them to white light causes the leaves to reorient to more horizontal inclinations. These light-dependent leaf movements are more robust than, and distinct from, the diurnal movements of rosette leaves. However, the movements are gated by the circadian clock. The light-dependent leaf orientation response is mediated primarily through phytochromes A, B and E, with the orientation varying with the ratio of red light to far-red light, consistent with other shade-avoidance responses. However, even plants lacking these phytochromes were able to alter leaf inclination in response to white light, suggesting a role for other photoreceptors. In particular, we found significant changes in leaf inclination for plants exposed to green light. This green light response may be caused, in part, by light-dependent regulation of abscisic acid (ABA) biosynthesis.  相似文献   

15.
Yamamoto K  Kiss JZ 《Plant physiology》2002,128(2):669-681
The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.  相似文献   

16.
In higher plants, shoots and roots show negative and positive gravitropism, respectively. Data from surgical ablation experiments and analysis of starch deficient mutants have led to the suggestion that columella cells in the root cap function as gravity perception cells. On the other hand, endodermal cells are believed to be the statocytes (that is, gravity perceiving cells) of shoots. Statocytes in shoots and roots commonly contain amyloplasts which sediment under gravity. Through genetic research with Arabidopsis shoot gravitropism mutants, sgr1/scr and sgr7/shr, it was determined that endodermal cells are essential for shoot gravitropism. Moreover, some starch biosynthesis genes and EAL1 are important for the formation and maturation of amyloplasts in shoot endodermis. Thus, amyloplasts in the shoot endodermis would function as statoliths, just as in roots. The study of the sgr2 and zig/sgr4 mutants provides new insights into the early steps of shoot gravitropism, which still remains unclear. SGR2 and ZIG/SGR4 genes encode a phospholipase-like and a v-SNARE protein, respectively. Moreover, these genes are involved in vacuolar formation or function. Thus, the vacuole must play an important role in amyloplast sedimentation because the sgr2 and zig/sgr4 mutants display abnormal amyloplast sedimentation.  相似文献   

17.
A lettuce (Lactuca sativa L.) mutant that exhibits a procumbent growth habit was identified and characterized. In two wild type (WT) genetic backgrounds, segregation patterns revealed that the mutant phenotype was controlled by a recessive allele at a single locus, which was designated weary. Hypocotyls and inflorescence stems of plants homozygous for the weary allele exhibited reduced gravitropic responses compared with WT plants, but roots exhibited normal gravitropism. Microscopic analysis revealed differences in the radial distribution of amyloplasts in hypocotyl and inflorescence stem cells of weary and WT plants. Amyloplasts occurred in a single layer of endodermal cells in WT hypocotyls and inflorescence stems. By contrast, amyloplasts were observed in several layers of cortical cells in weary hypocotyls, and weary inflorescence stem cells lacked amyloplasts entirely. These results are consistent with the proposed role of sedimenting amyloplasts in shoot gravitropism of higher plants. The phenotype associated with the weary mutant is similar to that described for the Arabidopsis mutant sgr1/scr, which is defective in radial patterning and gravitropism.  相似文献   

18.
The impact of light intensity on shade-induced leaf senescence   总被引:2,自引:0,他引:2  
Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.  相似文献   

19.
20.
Chicory root explants (Cichorium intybus L. var. foliosum) of two cultivars, taken before and after hydroponic forcing, were cultured in vitro in complete darkness supplemented with red and far-red light treatments. Using 5 min red light per day, the strong stem elongation occurring in complete darkness was converted to rosette formation. This reaction was reversed to stem elongation (accompanied by leaf formation) adding 15 min far-red light after the red light. Fifteen min far-red light per day alone caused the same reaction as 5 min red/15 min far-red light. Far-red light followed by red light caused rosette formation. In stems, formed under complete darkness in vitro, the presence of phytochrome was shown. No phytochrome was detected in the root fragment itself.Abbreviations R red light - FR far-red light - GA gibberellinic acid - A absorbance - FW fresh weight  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号