首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide binding ability of the novel anthracycline drug, 3-fluoro-4-demethoxydaunomycin, has been studied by two dimensional 1H NMR correlated spectroscopy (COSY). In the COSY spectrum of the nucleotide mini-helix d(CTGCAG)2 cross-peaks are observed from the spin-coupled H6 and H5 protons of the cytidine bases. Additional cytidine H6/H5 cross-peaks are observed in the COSY spectrum of the anthracycline-d(CTGCAG)2 complex. These additional cytidine cross-peaks enable the identification of the anthracycline binding sites and the determination of the relative kinetic stability of the bound drug at each binding site.  相似文献   

2.
Raman difference spectrophotometry has been used to study the interaction of CH3Hg(II) with cytidine and Ado-5'-P at high pH. In contrast to the binding reactions which occur at lower pH or in non-aqueous solvents such as dimethyl sulfoxide, a proton is transferred from the amino group; and the complexes are CH3HgCydH-1 and CH3HgAdoH-1-5'-P. The spectra are significantly different from those of the cationic complexes. The integrated intensities of ligand modes which shift upon metalation can be used to measure the concentration of unreacted ligand and consequently the extent of the reaction. Equilibrium constants for the reactions CH3HgOH + L yields CH3HgLH-1 + H2O were estimated to be log KCyd equals 0.63 plus or minus 0.05 and log KAdo-5'-P equals 0.85 plus or minus 0.05, in fair agreement with values determined under very different conditions by ultraviolet spectrophotometry. The vibrational spectrum of the ligand in CH3HgCydH-1 is virtually the same as that of UrdH-1- which is isoelectronic. The spectrum of the ligand in CH3HgAdoH-1-5'-P is more similar to the isoelectronic base InoH-1-than to Ado-5'-P, although the resemblance is not so close as in the CydH-1---UrdH-1-case. The structures of these complexes are discussed on the basis of their vibrational spectra and similarities in the spectra of related compounds. It is concluded that the CH3Hg(II) binds to the amino nitrogen at high pH with both cytidine and Ado-5'-P. In neutral solution with excess CH3Hg(II), metalation occurs on the amino groups, on the ring, and also on the ribose.  相似文献   

3.
CD study of four modified nucleosides, constituents of tRNA molecules, revealed that 2-thio-5-methyluridine and 5-methyluridine in aqueous solution, 0.1N HCl, and organic solvents essentially occur in an anti-conformation. 5-Methylcytidine also occurs in an anti-conformation similar to cytidine in aqueous solution and organic solvents, while 2-thiocytidine dihydrate appears to occur in an anti-conformation. It is stressed that the CD data of thionucleosides might be applied to the successfully conformational analysis of tRNA molecules.  相似文献   

4.
Solution conformation in different conditions of r(CGCGCG) has been studied by a Raman spectroscopic method. In NaCl solution, r (CGCGCG) takes only an A-form duplex in which guanosine and cytidine have C3'endo-anti conformation even at 5M salt concentration. In much higher ionic strength condition (5M NaCl plus 1M MgCl2 or 6M NaClO4), it undergoes a transition to a left-handed Z-form. The Raman spectrum of the Z-form RNA was found to be very similar to that of Z-form DNA, suggesting that Z-RNA involves a C3'endo-syn guanosine and an in between form of C2'endo-Cl'exo-anti cytidine.  相似文献   

5.
Cui F  Wang J  Yao X  Wang L  Zhang Q  Qu G 《Biopolymers》2007,87(2-3):174-182
In this study, the interaction between cytidine and human serum albumin (HSA) was investigated for the first time by fluorescence spectroscopy in combination with UV absorption spectrum and molecular modeling under simulative physiological conditions. Experimental results indicated that cytidine had a strong ability to quench the intrinsic fluorescence of human serum albumin. The binding constants (K) at different temperatures, thermodynamic parameter enthalpy changes (DeltaH) and entropy changes (DeltaS) of HSA-cytidine had been calculated according to the relevant fluorescence data, which indicated that the hydrophobic and electrostatic interactions played a major role, which was in agreement with the results of molecular modeling study. In addition, the effects of other ions on the binding constants were also studied. Furthermore, synchronous fluorescence technology was successfully applied to the determination of human serum albumin added into the cytidine solution.  相似文献   

6.
Cytidine deaminase (cytidine aminohydrolase, EC 3.5.4.5) from Escherichia coli has been purified to homogeneity through a rapid and efficient two-step procedure consisting of anion-exchange chromatography followed by preparative electrophoresis. The final preparation is homogeneous, as judged by a single band obtained by disc gel electrophoresis performed in the absence and presence of denaturing agents. The native protein molecular weight determined by gel filtration is 56 000. Sodium dodecyl sulfate disc gel electrophoresis experiments conducted upon previous incubation of the enzyme with dimethyl suberimidate suggest an oligomeric structure of two identical subunits of 33 000 molecular weight. The absorption spectrum of the protein reveals a maximum at 277 nm and a minimum at 255 nm. The isoelectric point is at pH 4.35. Amino acid analysis indicates an excess of acidic amino acid residues as well as six half-cystine residues. No interchain disulfide groups have been evidenced. According to Cleland's nomenclature, kinetic analysis shows a rapid-equilibrium random Uni-Bi mechanism. Cytidine deaminase is competitively inhibited by various nucleosides. Km values for cytidine, deoxycytidine, and 5-methylcytidine are 1.8 X 10(-4), 0.9 X 10(-4), and 12.5 X 10(-4) M, respectively.  相似文献   

7.
It is shown that component analysis could be applied to study the UV difference spectra of cytidine oligomers and hairpin oligonucleotides with cytidines in the loop region in order to account for the melting and titration results in terms of cytidine stacking and protonation. Upon acid titration, the dC(10) oligomer undergoes cooperative conformational transition at pH 6.3 accompanied by protonation and formation of the i-structure with half of the residues protonated. The stability of the hemiprotonated structure increases with decreasing pH, the i-structure persisting still in the region of pH相似文献   

8.
Class-switch recombination (CSR), somatic hypermutation (SHM), and antibody gene conversion are distinct DNA modification reactions, but all are initiated by activation-induced cytidine deaminase (AID), an enzyme that deaminates cytidine residues in single-stranded DNA. Here we describe a mutant form of AID that catalyzes SHM and gene conversion but not CSR. When expressed in E. coli, AID(delta189-198) is more active in catalyzing cytidine deamination than wild-type AID. AID(delta189-198) also promotes high levels of gene conversion and SHM when expressed in eukaryotic cells, but fails to induce CSR. These results underscore an essential role for the C-terminal domain of AID in CSR that is independent of its cytidine deaminase activity and that is not required for either gene conversion or SHM.  相似文献   

9.
Cytidine is an industrially useful precursor for the production of antiviral compounds and a variety of industrial compounds. Interest in the microbial production of cytidine has grown recently and high-throughput screening of cytidine over-producers is an important approach in large-scale industrial production using microorganisms. An enzymatic assay for cytidine was developed combining cytidine deaminase (CDA) and indophenol method. CDA catalyzes the cleavage of cytidine to uridine and NH3, the latter of which can be accurately determined using the indophenol method. The assay was performed in 96-well plates and had a linear detection range of cytidine of 0.058 - 10 mM. This assay was used to determine the amount of cytidine in fermentation flasks and the results were compared with that of High Perfomance Liquid Chromatography (HPLC) method. The detection range of the CDA method is not as wide as that of the HPLC, furthermore the correlation factor of CDA method is not as high as that of HPLC. However, it was suitable for the detection of large numbers of crude samples and was applied to high-throughput screening for high cytidine-producing strains using 96-well deep-hole culture plates. This assay was proved to be simple, accurate, specific and suitable for cytidine detection and high-throughput screening of cytidine-producing strains in large numbers of samples (96 well or more).  相似文献   

10.
High-resolution homonuclear and heteronuclear two-dimensional NMR studies have been carried out on the self-complementary d(C-C-G-C-G-A-A-T-T-C-C-G-G) duplex (designated GCG 13-mer) in aqueous solution. This sequence contains an extra cytidine located between residues G3 and G4 on each strand of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) and correlated (COSY and relay COSY) spectra for the GCG 13-mer duplex in H2O and D2O solution. The extra cytidine at the bulge site (designated CX) results in more pronounced changes in the NOE distance connectivities for the G3-CX-G4 segment centered about the CX residue compared to the C9-C10 segment on the partner strand opposite the CX residue for the GCG 13-mer duplex at 25 degrees C. The cross-peak intensities in the short mixing time NOESY spectrum also establish that all glycosidic torsion angles including that of CX are anti in the GCG 13-mer duplex at 25 degrees C. The observed chemical shift changes for the CX base protons and the G3pCX phosphorus resonance with temperature between 0 and 40 degrees C demonstrate a temperature-dependent conformational equilibrium in the premelting transition region. The NOE and chemical shift parameters establish that the predominant conformation at low temperature (0 degree C) has the extra cytidine looped out of the helix with the flanking G3.C10 and G4.C9 base pairs stacked on each other. These results support conclusions based on earlier one-dimensional NMR studies of extra cytidine containing complementary duplexes in aqueous solution [Morden, K. M., Chu, Y. G., Martin, F. H., & Tinoco, I., Jr. (1983) Biochemistry 22, 5557-5563. Woodson, S. A., & Crothers, D. M. (1987) Biochemistry 26, 904-912]. By contrast, the chemical shift and NOE parameters demonstrate that the conformational equilibrium shifts toward a structure with a stacked extra cytidine on raising the temperature to 40 degrees C prior to the helix-coil melting transition. The most downfield shifted phosphorus resonance in the GCG 13-mer duplex has been assigned to the phosphate in the C2-G3 step, and this observation demonstrates that the perturbation in the phosphodiester backbone extends to regions removed from the (G3-CX-G4).(C9-C10) bulge site.  相似文献   

11.
Hypermutation of an ancient human retrovirus by APOBEC3G   总被引:2,自引:1,他引:1  
Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, but all are remnants of ancient retroviral infections and harbor inactivating mutations that render them replication defective. Nevertheless, as viral “fossils,” HERVs may provide insights into ancient retrovirus-host interactions and their evolution. Indeed, one endogenous retrovirus [HERV-K(HML-2)], which has replicated in humans for the past few million years but is now thought to be extinct, was recently reconstituted in a functional form, and infection assays based on it have been established. Here, we show that several human APOBEC3 proteins are intrinsically capable of mutating and inhibiting infection by HERV-K(HML-2) in cell culture. We also present striking evidence that two HERV-K(HML-2) proviruses that are fixed in the modern human genome (HERV-K60 and HERV-KI) were subjected to hypermutation by a cytidine deaminase. Inspection of the spectrum of mutations that are found in HERV-K proviruses in the human genome and HERV-K DNA generated during in vitro replication in the presence of each of the human APOBEC3 proteins unequivocally identifies APOBEC3G as the cytidine deaminase responsible for hypermutation of HERV-K60 and HERV-KI. This is a rare example of the antiretroviral effects of APOBEC3G in the setting of natural human infection, whose consequences have been fossilized in human DNA, and a striking example of inactivation of ancient retroviruses in humans through enzymatic cytidine deamination.  相似文献   

12.
Rabbit liver tRNA nucleotidyltransferase catalyzes the incorporation of AMP and CMP into the model acceptor substrate, cytidine. The apparent Km for cytidine in this reaction is about 80 to 90 mM which is more than 10(4) greater than the Km values for the natural substrates, tRNA lacking the terminal AMP (tRNA-C-C) and tRNA lacking the terminal pCpA (tRNA-C). The Vmax values for the model reaction are only 5% and 2% of those for the reaction with the natural tRNA substrates. Addition of the tRNA fragments, tRNA lacking the terminal XpCpCpA sequence (tRNA-(X - 1)p) and tRNA lacking the terminal CpCpA (tRNA-Xp), greatly stimulates the rate of nucleotide incorporation into cytidine. In the case of CMP incorporation into cytidine, tRNA-Xp stimulates the reaction about 60-fold, to a rate similar to that of the normal reaction with tRNA-C. The tRNA fragment has no effect on the apparent Km of either cytidine or CTP, but only alters the Vmax of the reaction. Stimulation of the model reactions is maximal with tRNA fragments of specific chain lengths. These results provide direct evidence that the nonreacting regions of a substrate molecule play an important role in the catalytic efficiency of an enzyme.  相似文献   

13.
A method for measuring internal nucleoside triphosphate pools of lactococci was optimized and validated. This method is based on extraction of (33)P-labeled nucleotides with formic acid and evaluation by two-dimensional chromatography with a phosphate buffer system for the first dimension and with an H(3)BO(3)-LiOH buffer for separation in the second dimension. We report here the sizes of the ribo- and deoxyribonucleotide pools in laboratory strain MG1363 during growth in a defined medium. We found that purine- and pyrimidine-requiring strains may be used to establish physiological conditions in batch fermentations with altered nucleotide pools and growth rates by addition of nucleosides in different combinations. Addition of cytidine together with inosine to a purine-requiring strain leads to a reduction in the internal purine nucleotide pools and a decreased growth rate. This effect was not seen if cytidine was replaced by uridine. A similar effect was observed if cytidine and inosine were added to a pyrimidine-requiring strain; the UTP pool size was significantly decreased, and the growth rate was reduced. To explain the observed inhibition, the nucleoside transport systems in Lactococcus lactis were investigated by measuring the uptake of radioactively labeled nucleosides. The K(m) for for inosine, cytidine, and uridine was determined to be in the micromolar range. Furthermore, it was found that cytidine and inosine are competitive inhibitors of each other, whereas no competition was found between uridine and either cytidine or inosine. These findings suggest that there are two different high-affinity nucleoside transporters, one system responsible for uridine uptake and another system responsible for the uptake of all purine nucleosides and cytidine.  相似文献   

14.
The cyclic dipeptide, L -alanylglycyl anhydride, has been studied by optical rotatory dispersion; both L -alanylglycyl anhydride and the lactam, L -3-aminopyrrolidin-2-one, have been studied by circular dichroism. In hydroxylic solvents the circular dichroism spectra of 3-aminopyrrolidin-2-one can be attributed to an n–π* transition near 220 mμ and a π–π* transition near 190 mμ. In these solvents the optical activity of L -alanylglycyl anhydride can be explained as being due to contributions of n–π* transitions and a split π–π* transition. In acetonitrile, however, the circular dichroism spectrum of 3-aminopyrrolidin-2-one shows an additional apparent minimum near 200 mμ. The CD spectrum of the dipeptide is also quite distinctive in this solvent. The possible nature of the band at 200 mμ and the implications of these findings are discussed.  相似文献   

15.
Shajani Z  Varani G 《Biochemistry》2008,47(29):7617-7625
The goal of this work was to examine if sequence-dependent conformational flexibility in DNA plays a role in base extrusion, a common conformational change induced by many DNA-modifying enzymes. We studied the dynamics of the double-stranded DNA target of the HhaI methyltransferase by recording an extensive set of (13)C NMR relaxation parameters. We observe that the cytidine furanose rings experience fast (picosecond to nanosecond) motions that are not present in other nucleotides; the methylation site experiences particularly high mobility. We also observe that the bases of guanosine and cytidine residues within the HhaI recognition sequence GCGC experience motions on a much slower (1-100 micros) time scale. We compare these observations with previous solution and solid-state NMR studies of the EcoRI nuclease target sequence, and solid-state NMR studies of a similar HhaI target construct. While an increased mobility of cytidine furanose rings compared to those of other nucleotides is observed for both sequences, the slower motions are only observed in the HhaI target DNA. We propose that this inherent flexibility lowers the energetic barriers that must occur when the DNA binds to the HhaI methyltransferase and for extrusion of the cytidine prior to its methylation.  相似文献   

16.
紫膜与溶剂的相互作用   总被引:1,自引:1,他引:0  
本文研究了溶剂正己烷,正十六烷,甲苯和二甲基甲酰胺(DMF dimethyl formamide)与紫膜的相互作用.吸收光谱,园二色谱和紫膜光循环中间产物M412的动力学过程的测量表明,在不同条件下,溶剂与紫膜能相互作用而影响到紫膜的光谱特性和光化学循环动力学过程.结果说明,在制作紫膜LB膜时,正己烷和正十六烷是合适的,使用二甲基甲酰胺时必须防止强光照射,甲苯则不能采用.  相似文献   

17.
2-Aminopurine (2AP) is an analogue of adenine that has been utilized widely as a fluorescence probe of protein-induced local conformational changes in DNA. Within a DNA strand, this fluorophore demonstrates characteristic decreases in quantum yield and emission decay lifetime that vary sensitively with base sequence, temperature, and helix conformation but that are accompanied by only small changes in emission wavelength. However, the molecular interactions that give rise to these spectroscopic changes have not been established. To develop a molecular model for interpreting the fluorescence measurements, we have investigated the effects of environmental polarity, hydrogen bonding, and the purine and pyrimidine bases of DNA on the emission energy, quantum yield, and intensity decay kinetics of 2AP in simple model systems. The effects of environmental polarity were examined in a series of solvents of varying dielectric constant, and hydrogen bonding was investigated in binary mixtures of water with 1,4-dioxane or N,N-dimethylformamide (DMF). The effects of the purine and pyrimidine bases were studied by titrating 2AP deoxyriboside (d2AP) with the nucleosides adenosine (rA), cytidine (rC), guanosine (rG), and deoxythymidine (dT), and the nucleoside triphosphates ATP and GTP in neutral aqueous solution. The nucleosides and NTPs each quench the fluorescence of d2AP by a combination of static (affecting only the quantum yield) and dynamic (affecting both the quantum yield and the lifetime, proportionately) mechanisms. The peak wavelength and shape of the emission spectrum are not altered by either of these effects. The static quenching is saturable and has half-maximal effect at approximately 20 mM nucleoside or NTP, consistent with an aromatic stacking interaction. The rate constant for dynamic quenching is near the diffusion limit for collisional interaction (k(q) approximately 2 x 10(9) M(-1) s(-1)). Neither of these effects varies significantly between the various nucleosides and NTPs studied. In contrast, hydrogen bonding with water was observed to have a negligible effect on the emission wavelength, fluorescence quantum yield, or lifetime of 2AP in either dioxane or DMF. In nonpolar solvents, the fluorescence lifetime and quantum yield decrease dramatically, accompanied by significant shifts in the emission spectrum to shorter wavelengths. However, these effects of polarity do not coincide with the observed emission wavelength-independent quenching of 2AP fluorescence in DNA. Therefore, we conclude that the fluorescence quenching of 2AP in DNA arises from base stacking and collisions with neighboring bases only but is insensitive to base-pairing or other hydrogen bonding interactions. These results implicate both structural and dynamic properties of DNA in quenching of 2AP and constitute a simple model within which the fluorescence changes induced by protein-DNA binding or other perturbations may be interpreted.  相似文献   

18.
Pyrimidine-requiring cdd mutants of Escherichia coli deficient in cytidine deaminase utilize cytidine as a pyrimidine source by an alternative pathway. This has been presumed to involve phosphorylation of cytidine to CMP by cytidine/uridine kinase and subsequent hydrolysis of CMP to cytosine and ribose 5-phosphate by a putative CMP hydrolase. Here we show that cytidine, in cdd strains, is converted directly to cytosine and ribose by a ribonucleoside hydrolase encoded by the previously uncharacterized gene ybeK, which we have renamed rihA. The RihA enzyme is homologous to the products of two unlinked genes, yeiK and yaaF, which have been renamed rihB and rihC, respectively. The RihB enzyme was shown to be a pyrimidine-specific ribonucleoside hydrolase like RihA, whereas RihC hydrolyzed both pyrimidine and purine ribonucleosides. The physiological function of the ribonucleoside hydrolases in wild-type E. coli strains is enigmatic, as their activities are paralleled by the phosphorolytic activities of the nucleoside phosphorylases, and a triple mutant lacking all three hydrolytic activities grew normally. Furthermore, enzyme assays and lacZ gene fusion analysis indicated that rihB was essentially silent unless activated by mutation, whereas rihA and rihC were poorly expressed in glucose medium due to catabolite repression.  相似文献   

19.
We reported previously on NMR studies of (Y+)n.(R+)n(Y-)n DNA triple helices containing one oligopurine strand (R)n and two oligopyrimidine strands (Y)n stabilized by T.AT and C+.GC base triples [de los Santos, C., Rosen, M., & Patel, D. J. (1989) Biochemistry 28, 7282-7289]. Recently, it has been established that guanosine can recognize a thymidine.adenosine base pair to form a G.TA triple in an otherwise (Y+)n.(R+)n(Y-)n triple-helix motif. [Griffin, L. C., & Dervan, P. B. (1989) Science 245, 967-971]. The present study extends the NMR research to the characterization of structural features of a 31-mer deoxyoligonucleotide that folds intramolecularly into a 7-mer (Y+)n.(R+)n(Y-)n triplex with the strands linked through two T5 loops and that contains a central G.TA triple flanked by T.AT triples. The G.TA triplex exhibits an unusually well resolved and narrow imino and amino exchangeable proton and nonexchangeable proton spectrum in H2O solution, pH 4.85, at 5 degrees C. We have assigned the imino protons of thymidine and amino protons of adenosine involved in Watson-Crick and Hoogsteen pairing in T.AT triples, as well as the guanosine imino and cytidine amino protons involved in Watson-Crick pairing and the protonated cytidine imino and amino protons involved in Hoogsteen pairing in C+.GC triples in the NOESY spectrum of the G.TA triplex. The NMR data are consistent with the proposed pairing alignment for the G.TA triple where the guanosine in an anti orientation pairs through a single hydrogen bond from one of its 2-amino protons to the 4-carbonyl group of thymidine in the Watson-Crick TA pair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The utilization of (2-14C)orotic acid for the synthesis of cytidine components of the acid-soluble extract and for the RNA cytosine is decreased in the liver of rats which fasted for 24 or 72 h. The depression of the specific activity of the cytidine components is greater in animals which received alpha-HCH during the 24-hour interval after removal of food than in the control group; by contrast, the specific activity of the cytidine components again increases in rats fasting for 72 h. Analogous changes also occurred in the specific activity of RNA cytosine. Both the (U-14C)cytidine uptake and its utilization for the synthesis of RNA cytosine are enhanced in fasting rats; the administration of alpha-HCH has a potentiating effect. The total content of cytidine components of the acidsoluble extract of 1 g of liver tissue is enhanced 24 h after the animals of the control and experimental group were deprived of food. There are no marked differences in the concentration of the uridine components. Fasting has an additive effect on the increase of cytochrome P-450 level in the alpha-HCH treated rats. Alpha-HCH = alpha-1,2,3,4,5,6-hexachlorocyclohexane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号