首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cell walls of a selected isolate of Staphylococcus aureus FDA 209P were observed undergoing progressive disintegration when exposed to lysostaphin (1 unit/ml) in 24% NaCl solution. Electron micrographs of ultrathin sections of test cells after exposure to lysostaphin for 2 min showed only superficial evidence of lytic damage. However, an average of 89% of these cells were osmotically fragile, and 21% were damaged beyond their capacity to regenerate cell walls and to grow as normal staphylococci. The 68% (average) of the osmotically fragile cells which retained the capacity to revert to normal staphylococci were designated spheroplasts. Neither perforations of the cell walls nor separation of the cell walls from the plasma membranes were observed in the micrographs of these 2-min spheroplasts. Thus, it appears that the osmotic fragility of these and possibly all lysostaphin-induced staphylococcal spheroplasts results from the hydrolysis of a critical number of the pentapeptide cross-linkages of the murein of the cell wall. Electron micrographs of cells exposed to lysostaphin for 5 to 10 min showed perforations and more extensive damage, including the separation of walls from the plasma membranes and the disintegration of large sections of the walls. Smaller numbers of spheroplasts (21 and 8%) were recovered from these 5- and 10-min preparations; those recovered probably represent cells which were attacked more slowly than the majority by the lytic enzyme. The nonrevertible, osmotically fragile cells that retained segments of cell wall were designated protoplast-like bodies. After 20-min exposure to lysostaphin, all of the cell wall was digested away from most of the cells, and true staphylococcal protoplasts were produced. These lysostaphin-induced, osmotically fragile forms appear to have different osmotic properties from the staphylococcal "protoplasts" reported by other investigators and should serve as the basis for a variety of fundamental investigations.  相似文献   

2.
When Staphylococcus aureus FDA 209P cells were treated with lysostaphin (1 unit/ml) in hypertonic sodium chloride or sucrose environments, viable, osmotically fragile spheroplasts were produced. Turbidimetric studies indicated that 64% (w/v) sucrose or 20 to 28% (w/v) sodium chloride gives maximal protection against lysis of the lysostaphin-treated cells. The NaCl appeared to give greater protection than the sucrose and proved to be much more suitable for viability and related studies. Viability of both shocked and nonshocked treated cells was determined by S. aureus colony counts on agar plates overlayered with the test dilution of the cells suspended in 4 ml of semisolid agar containing 72% sucrose. The difference in the counts represented the number of revertible spheroplasts. Under these conditions, 30 to 50% of the test cells were recovered as osmotically fragile, but revertible, spheroplasts after 5 to 10 min of exposure to lysostaphin in 24% NaCl. This rewere obtained after 5 to 10 min of exposure to lysostaphin in 24% NaCl. This recovery rate fell off rapidly with prolonged exposure. In view of residual turbidity of 30- and even 60-min exposure preparations, it appeared probable that most of the osmotically fragile cells were eventually converted to protoplasts by the prolonged lysostaphin treatment. Osmotically fragile cells were converted to osmotic stability by fixation with 4% (v/v) Formalin.  相似文献   

3.
The advent of Staphylococcus aureus strains that are resistant to virtually all antibiotics has increased the need for new antistaphylococcal agents. An example of such a potential therapeutic is lysostaphin, an enzyme that specifically cleaves the S. aureus peptidoglycan, thereby lysing the bacteria. Here we tracked over time the structural and physical dynamics of single S. aureus cells exposed to lysostaphin, using atomic force microscopy. Topographic images of native cells revealed a smooth surface morphology decorated with concentric rings attributed to newly formed peptidoglycan. Time-lapse images collected following addition of lysostaphin revealed major structural changes in the form of cell swelling, splitting of the septum, and creation of nanoscale perforations. Notably, treatment of the cells with lysostaphin was also found to decrease the bacterial spring constant and the cell wall stiffness, demonstrating that structural changes were correlated with major differences in cell wall nanomechanical properties. We interpret these modifications as resulting from the digestion of peptidoglycan by lysostaphin, eventually leading to the formation of osmotically fragile cells. This study provides new insight into the lytic activity of lysostaphin and offers promising prospects for the study of new antistaphylococcal agents.  相似文献   

4.
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.  相似文献   

5.
Staphylococcus simulans secretes lysostaphin, a bacteriolytic enzyme that specifically binds to the cell wall envelope of Staphylococcus aureus and cleaves the pentaglycine cross bridges of peptidoglycan, thereby killing staphylococci. The study of S. aureus mutants with resistance to lysostaphin-mediated killing has revealed biosynthetic pathways for cell wall assembly. To identify additional genes involved in cell wall envelope biosynthesis, we have screened a collection of S. aureus strain Newman transposon mutants for lysostaphin resistance. Bursa aurealis insertion in SAV2335, encoding a polytopic membrane protein with predicted protease domain, caused a high degree of lysostaphin resistance, similar to the case for a previously described femAB promoter mutant. In contrast to the case for this femAB mutant, transposon insertion in SAV2335, herein named lyrA (lysostaphin resistance A), did not cause gross alterations of cell wall cross bridges such as truncations of pentaglycine to tri- or monoglycine. Also, inactivation of LyrA in a methicillin-resistant S. aureus strain did not precipitate a decrease in beta-lactam resistance as observed for fem (factor essential for methicillin resistance) mutants. Lysostaphin bound to the cell wall envelopes of lyrA mutants in a manner similar to that for wild-type staphylococci. Lysostaphin resistance of lyrA mutants is attributable to altered cell wall envelope properties and may in part be due to increased abundance of altered cross bridges. Other lyr mutants with intermediate lysostaphin resistance carried bursa aurealis insertions in genes specifying GTP pyrophosphokinase or enzymes of the purine biosynthetic pathway.  相似文献   

6.
Asbell, Mary A. (University of Georgia, Athens), and R. G. Eagon. Role of multivalent cations in the organization, structure, and assembly of the cell wall of Pseudomonas aeruginosa. J. Bacteriol. 92:380-387. 1966. -Incubation of Pseudomonas aeruginosa with ethylenediaminetetraacetate induced the formation of osmotically fragile rods termed osmoplasts. These could be restored to osmotically stable forms by multivalent cations. Only those cells restored by divalent cations normally found in the cell wall were capable of multiplication. The respiration of restored cells, however, was unimpaired, irrespective of whether they were capable of multiplication. Moreover, the permeability characteristics of osmoplasts and restored cells were unimpaired. When multivalent cations were chelated from the cell wall and replaced by sodium, a weakened cell wall and an osmotically fragile cell resulted. This was apparently caused by the absence of cross-linkages in the cell wall via multivalent cations. Tris(hydroxymethyl)aminomethane buffer compounded the lethal effects of ethylenediaminetetraacetate. The lipopolysaccharide component was inferred to be the site of attack by ethylenediaminetetraacetate. A mechanism for the synthesis of the lipopolysaccharide sacculus was proposed whereby negatively charged subunits are "trapped" by forming ionic and coordinate bonds intermediated by multivalent cations.  相似文献   

7.
When cells of a marine pseudomonad were washed and suspended in 0.5 m sucrose, they retained their rod shape, but thin sections, when examined in an electron microscope, revealed that the outer layer of the cell wall had separated a considerable distance from the cytoplasmic membrane. Treatment of such cells with lysozyme alone produced no obvious change, but treatment with ethylenediaminetetraacetic acid (EDTA) alone caused the outer wall to disappear. A combination of EDTA and lysozyme resulted in the rapid formation of spheres essentially free from hexosamine and indistinguishable from protoplasts of gram-positive bacteria. When cells were washed with 0.5 m NaCl and then suspended in 0.5 m sucrose, they also retained their rod shape, but in this case the outer layer separated from the cells completely and could be recovered from the suspending medium. Such cells were converted to protoplasts by the action of lysozyme alone. Cells washed and finally suspended in 0.5 m NaCl, when treated with EDTA and lysozyme, slowly became spherical. Thin sections revealed typical spheroplasts of gram-negative bacteria in which the outer wall remained intact. Protoplasts took up alpha-aminoisobutyric acid by a Na(+)-dependent process.  相似文献   

8.
A simple and reliable method for polyethylene glycol-induced plasmid transformation of a temperature-sensitive peptidoglycan-deficient mutant of Staphylococcus aureus is described. The procedure uses strains carrying the tofA372 mutation grown under conditions that yield osmotically fragile cells capable of efficient wall regeneration. The peptidoglycan-deficient cells were transformed with plasmids pE194 and pI258 at frequencies comparable with those obtained with protoplasts prepared with lysostaphin treatment. A readily portable tofA372 mutation was constructed by isolating an insertion of the erythromycin resistance transposon Tn551 adjacent to tofA372. tofA372 was shown by protoplast fusion and transformation analyses to be in the gene order hly-421-omega [Chr::Tn551]1059-tofA372-uraB232-omega [Chr::Tn916]1101-thrB106 on the chromosome of S. aureus NCTC 8325.  相似文献   

9.
Transformation in Quasi Spheroplasts of Bacillus subtilis   总被引:4,自引:8,他引:4       下载免费PDF全文
RECENTLY DEVELOPED DIFFERENTIAL PLATING MEDIA PERMIT THE DISTINCTION OF FOUR CELL TYPES IN INCOMPLETELY PROTOPLASTED POPULATIONS: intact, osmotically insensitive bacilli; osmotically sensitive rods; spheres with adherent wall residues, called quasi spheroplasts; and protoplasts. Such population mixtures were washed free of lysozyme, and then transforming deoxyribonucleic acid (DNA) was added. Transformation was nil in the protoplasts, very low in the residual osmotically insensitive bacilli, and markedly enhanced in both osmotically sensitive rods and quasi spheroplasts. Transformation in the latter two population fractions was reduced, respectively, by about 60% and about 80% by deoxyribonuclease treatment. DNA adhering to the quasi spheroplasts transforms these cells only if they are permitted to resume wall synthesis; when the same cells are plated on a medium where they shed the residual wall and form L colonies, no transformant L colonies are recovered. It is inferred that far-reaching or complete protoplasting blocks all entry of transforming DNA into the cell interior. This may be owing to eversion of mesosomes. Evidence that intact mesosomes may be required for DNA entry is provided by the finding that the recovery of transformants in the intact cell system is sharply reduced on plating media containing 25% gelatin. On such media, cells expel their mesosomes and 75% of them do not re-form any. Our own data and a survey of published results suggest the generalization that partial depolymerization of the cell wall by lysozyme may enhance competence, whereas its complete removal abolishes it.  相似文献   

10.
The response of cultured CHO cells to U.V.L. irradiation during treatment with anisotonic solutions shows that treatment with hypotonic sucrose, NaCl or KCl solutions causes an increase in the cellular U.V.L. sensitivity, while exposure to hypertonic solutions causes a large decrease in U.V.L. sensitivity. Cells exposed to 1.8 M sucrose, NaCl or KCl solutions and given a U.V.L. dose of 252 erg/mm2 towards the end of the 20 min solution exposure time have survival levels which are respectively 228,26, and 23 times higher than the controls, i.e. cells irradiated in phosphate buffered saline. Cell volume data obtained using a Coulter counter, and nuclear area data of attached cells obtained using an optical microscope with a micrometer reticle, show that cell and nuclear size are related to U.V.L. sensitivity. That is, as cells shrink and the nuclear area decreases, the cells become more U.V.L.-resistant. During hypotonic treatment with 0.1 M NaCl, the cell volume, nuclear area and U.V.L. sensitivity increased in the first 2 to 4 min of exposure time, but at longer exposure times (greater than 3 to 4 min), cell volume, nuclear area and cellular U.V.L. sensitivity decreased. For 0.1 M KCl treatment the cells initially displayed a rapid increase in volume, nuclear area and U.V.L. sensitivity, but at the longer exposure times no decrease in cell and nuclear size were observed, and a slight increase in U.V.L. sensitivity occurred. Changes in U.V.L. sensitivity were related to changes in nuclear size and cell volume; however, calculations showed that during hypertonic treatment there is an ionic effect as well as an osmotic effect. That is, the cellular U.V.L. survival in equal hypertonic concentrations of NaCl or KCl was lower than in the same concentration of sucrose.  相似文献   

11.
Transfection of Lysostaphin-treated Cells of Staphylococcus aureus   总被引:5,自引:1,他引:4       下载免费PDF全文
After treatment with 1 unit of lysostaphin per ml for 3 min, two strains of Staphylococcus aureus, 233 and PS 44A HJD, were transfected with phenol-extracted deoxyribonucleic acid (DNA) from the staphylococcal bacteriophages, 53 and 44A HJD, respectively. The number of transfected cells was low in both systems, approximately two in 10(7) enzyme-treated cells. There was a saturation effect at high concentrations of DNA; optimal results were obtained at concentrations between 10 to 25 mug/ml. Growth curves and fluctuation tests indicated that cells of strain 44A HJD infected with phage, then converted to protoplasts by a 10-min treatment with lysostaphin, produce only one phage particle and lose their ability to lyse spontaneously in hypertonic media.  相似文献   

12.
Expotentially growing and plateau-phase V79 cells were exposed to various doses of neutrons and plated either immediately or after treatment in hypertonic medium (250-500 mM NaCl) to express radiation-induced potentially lethal damage (PLD). Postirradiation treatment of exponentially growing cells in hypertonic medium (500 mM) resulted in a decrease in both Dq and D0, whereas postirradiation treatment of plateau-phase cells in hypertonic medium (in the range between 200 to 1,500 mM) resulted mainly in a reduction of Dq. This difference in response between exponentially growing and plateau-phase cells may reflect differences in the chromatin structure in cells at various stages of the cell cycle, affecting fixation of radiation-induced damage. Exposure of plateau-phase cells to gamma rays, on the other hand, resulted in a treatment time and salt concentration-dependent decrease in Dq along with a decrease in D0. Repair of neutron-induced, hypertonic treatment-sensitive PLD, measured by delaying treatment for various periods after irradiation, was found to proceed with a t1/2 of about 1 h. This is similar to the repair kinetics obtained by delaying treatment of plateau-phase cells with 150 microM beta-D-arabinofuranosyladenine (araA) after exposure to gamma rays or neutrons and contrasts the repair kinetics observed after exposure of cells to gamma rays. In this case, hypertonic treatment was found to affect a form of PLD repaired with a t1/2 of 10-15 min (beta-PLD) and araA, a different form of PLD, repaired with a t1/2 of about 1 h (alpha-PLD). Based on these results it is hypothesized that the sector of lesions affected by hypertonic treatment and araA coincides after exposure to neutrons (effect on alpha-PLD) but only partly overlaps after exposure to gamma rays (due to the effect on beta-PLD of hypertonic treatment). The results presented, together with previously published observations, suggest a differential induction and/or fixation by hypertonic medium of the alpha- and beta-PLD forms as the LET of the radiation increases. Furthermore, they indicate that direct comparison of the effects of a postirradiation treatment, as well as of the repair kinetics obtained by its delayed application after exposure to radiations of various LET, should be made with caution.  相似文献   

13.
Incubation of animal cells with hypertonic sucrose and polyethylene glycol (PEG) 1,000 renders endosomes sensitive in situ to hypotonic shock (Okada and Rechsteiner, 1982). We found that: 1) in vitro endosomes were osmotically insensitive; and 2) hypertonic sucrose inhibited transport from very early endosomes to lysosomes. Endocytic vesicles were labeled by incubating Chinese hamster ovary (CHO) cells for 1-10 min at 37 degrees C with horseradish peroxidase (HRP) and/or fluorescein isothiocyanate-conjugated dextran (FITC-dextran). Cell fractions prepared in 0.25 M sucrose were hypotonically shocked by dilution with 5 mM Na phosphate buffer, pH 6.7, to a final sucrose concentration of 0.05 M. After hypotonic shock, endocytized HRP and FITC-dextran pelleted with membrane while lysosomal hydrolases did not. The HRP activity in the pellet was latent, suggesting that endosomes were resistant to osmotic shock. Uptake in the presence of hypertonic sucrose had little effect on the subsequent osmotic sensitivity of the endosomes. Uptake in the presence of hypertonic sucrose and PEG 1,000 rendered endosomes fragile to cell homogenization. Unexpectedly, the inclusion of hypertonic sucrose in the uptake and chase media inhibited the appearance of HRP in lysosomes. HRP internalized during a 10-min uptake appeared as if it were present in two physically distinct compartments, one accessible to transport inhibition by exogenous sucrose ("very early" endosomes) and the other not ("early" endosomes). After a brief uptake (1-3 min), postincubation of CHO cells in 0.25 M sucrose-containing media completely blocked transport of internalized HRP to lysosomes. This blockage could be partially relieved by cointernalization of invertase with HRP. These results suggest that transport between multiple early endosome populations is sensitive to intraorganellar osmotic conditions.  相似文献   

14.
Plateau-phase Chinese V79 hamster cells were sequentially treated after exposure to gamma rays in medium made hypertonic by the addition of sodium chloride (370 mM) and with various concentrations of 9-beta-D-arabinofuranosyladenine (araA) to study their combined effect on fixation of potentially lethal damage (PLD). A 10-min treatment in hypertonic medium fixed an extensive amount of PLD and caused a decrease in D0 from 1.8 to 1.2 Gy without significantly affecting Dq. Subsequent treatment with araA caused further fixation of PLD but resulted in a specific, concentration-dependent reduction in Dq from 4.9 to 1.6 Gy after a 4-h exposure to 150 microM araA. A 30-min treatment in hypertonic medium reduced not only Do (from 1.8 to 1.0 Gy) but also Dq (from 4.9 to 2.7 Gy). Subsequent treatment with araA in this case affected only the residual shoulder, reducing it to 1.6 Gy after a 4-h treatment with 100 microM araA, a value similar to that obtained after treatment with araA of cells exposed to salt for only 10 min. When the repair of PLD fixed by a 10-min treatment with salt was measured by delaying its postirradiation application in the presence of various amounts of araA, a small decrease in the repair rate was observed but no significant effect on the relative increase in survival. Qualitatively similar results were obtained for repair of PLD sensitive to araA after a 10-min treatment in hypertonic medium. These results suggest the radiation induction of forms of PLD with different sensitivity to fixation by postirradiation treatments. araA is proposed to fix a form of PLD termed alpha-PLD, the repair of which takes place within 4-6 h and which causes the formation of the shoulder in the survival curve of cells plated immediately after irradiation. Short treatments in hypertonic medium (less than 10 min) are proposed to fix a form of PLD termed beta-PLD, the repair of which takes place within 1 h and leads to restoration of the slope to values equal to those obtained in the survival curve of cells plated immediately after irradiation. However, longer treatments in hypertonic medium also affect Dq and thus also alpha-PLD. Repair of beta-PLD was not significantly affected by araA and repair of alpha-PLD was not significantly affected by short hypertonic treatment, thus indicating the independence of the two forms of PLD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
T Baba  O Schneewind 《The EMBO journal》1996,15(18):4789-4797
Microbial organisms secrete antibiotics that cause the selective destruction of specific target cells. Although the mode of action is known for many antibiotics, the mechanisms by which these molecules are directed specifically to their target cells hitherto have not been described. Staphylococcus simulans secretes lysostaphin, a bacteriolytic enzyme that cleaves staphylococcal peptidoglycans in general but that is directed specifically to Staphylococcus aureus target cells. The sequence element sufficient for the binding of the bacteriocin as well as of hybrid indicator proteins to the cell wall of S.aureus consisted of 92 C-terminal lysostaphin residues. Targeting to the cell wall of S.aureus occurred either when the hybrid indicator molecules were added externally to the bacteria or when they were synthesized and exported from their cytoplasm by an N-terminal leader peptide. A lysostaphin molecule lacking the C-terminal targeting signal was enzymatically active but had lost its ability to distinguish between S.aureus and S.simulans cells, indicating that this domain functions to confer target cell specificity to the bacteriolytic molecule.  相似文献   

16.
Subunit Cell Wall of Sulfolobus acidocaldarius   总被引:9,自引:6,他引:3       下载免费PDF全文
The cell wall of Sulfolobus acidocaldarius has been isolated. Cells were mechanically disrupted with a French press, and the cytoplasmic membrane was removed by extracting cell-envelope fragments with Triton X-100. The Triton-insoluble cell wall material retained the characteristic subunit structure when examined in the electron microscope. Isolated cell wall fragments formed in open sheets that were easily separated from cytoplasmic contamination. Chemical studies showed that the Triton-insoluble cell wall fragments consisted of lipoprotein with small amounts of carbohydrate and hexosamine. The amino acid composition indicated a highly charged hydrophobic cell surface. The presence of diaminopimelic acid with only traces of muramic acid indicates that the cell envelope does not have a rigid peptidoglycan layer. The results of chemical analyses and electron microscopy suggest a wall-membrane interaction stabilizing the cell envelope. The chemical and physical properties of this type of cell envelope would appear to form the basis for a new major division of bacteria with the definitive characteristics of a morphologically distinct subunit cell wall devoid of peptidoglycan.  相似文献   

17.
LysK is the endolysin from the staphylococcal bacteriophage K, and can digest the cell wall of many staphylococci. Lysostaphin is a bacteriocin secreted by Staphylococcus simulans to kill Staphylococcus aureus. Both LysK and lysostaphin have been shown to lyse methicillin-resistant S. aureus (MRSA). This study describes optimal reaction conditions for the recombinant His-tagged LysK protein (pH range pH 6-10, and 0.3-0.5 M NaCl), and C-His-LysK MIC (32.85+/-4.87 mug mL(-1)). LysK and lysostaphin demonstrate antimicrobial synergy by the checkerboard assay.  相似文献   

18.
A method is described in which cells of Streptococcus mutans BHT can be converted to spherical, osmotically fragile protoplasts. Exponential-phase cells were suspended in a solution containing 0.5 M melezitose, and their cell walls were hydrolyzed with mutanolysin (M-1 enzyme). When the resultant protoplasts were incubated in a chemically defined growth medium containing 0.5 M NH4Cl, the protoplast suspensions increased in turbidity, protein, ribonucleic acid, and deoxyribonucleic acid in a balanced fashion. In the presence of benzylpenicillin (5 microgram/ml), balanced growth of protoplasts was indistinguishable from untreated controls. This absence of inhibition of protoplast growth in the presence of benzylpenicillin was apparently not due to inactivation of the antibiotic. When exponential-phase cells of S. mutans BHT were first exposed to 5 microgram of benzyl-penicillin per ml for 1 h and then converted to protoplasts, these protoplasts were also able to grow in chemically defined, osmotically stabilized medium. The ability of wall-free protoplasts to grow and to synthesize ribonucleic acid and protein in the presence of a relatively high concentration of benzylpenicillin contrasts with the previously reported rapid inhibition of ribonucleic acid and protein synthesis in intact streptococci. These data suggest that this secondary inhibition of ribonucleic acid and protein synthesis in whole cells is due to factors involved with the continued assembly of an intact, insoluble cell wall rather than with earlier stages of peptidoglycan synthesis.  相似文献   

19.
Cells of Streptococcus diacetilactis DRCI grown at 32 C in media containing glucose as the energy source were osmotically fragile and began to lyse immediately after growth was stopped (by the action of chloramphenicol or the exhaustion of glucose), unless they were then stabilized by hypertonic medium or spermine or by storage at low pH or low temperature, or both. In media containing excess glucose, with growth limited by exhaustion of some nutrient other than the energy source, the appearance of lysis was masked by the occurrence of a balance between lysis and synthesis. The osmotic fragility apparently resulted from inability of the organism to use glucose as an adequate precursor of galactosamine, and conditions of temperature and pH that promoted rapid growth on glucose were particularly conducive to the formation of cells that lysed readily. Growing the organism in media containing galactose, lactose, maltose, or glucose (at 17 C) as energy source resulted in the formation of cells that were resistant to lysis and richer in galactosamine than unstable cells formed on glucose at 32 C. The results indicate that the organism phosphorolyzes maltose to glucose plus beta-glucose-1-phosphate, and suggest that it can use the beta-glucose-1-phosphate in place of alpha-glucose-1-phosphate in the formation of cell materials.  相似文献   

20.
Exposure of the yeast Saccharomyces cerevisiae to hypertonic solutions of non-permeating compounds resulted in cell shrinkage, without plasmolysis. The relationship between cell volume and osmolality was non-linear; between 1 and 4 osM there was a plateau in cell volume, with apparently a resistance to further shrinkage; beyond 4 osM cell volume was reduced further. The loss of viability of S. cerevisiae after hypertonic stress was directly related to the reduction in cell volume in the shrunken state. The plasma membrane is often considered to be the primary site of osmotic injury, but on resuspension from a hypertonic stress, which would have resulted in a major loss of viability, all cells were osmotically responsive. The effects of osmotic stress on mitochondrial activity and structure were investigated using the fluorescent probe rhodamine 123. The patterns of rhodamine staining were altered only after extreme stress and are assumed to be a pathological feature rather than a primary cause of injury. Changes in the ultrastructure of the cell envelope were examined by freeze-fracture and scanning electron microscopy. In shrunken cells the wall increased in thickness, the outer surface remained unaltered, whilst the cytoplasmic side buckled with irregular projections into the cytoplasm. On return to isotonic solutions these structural alterations were reversible, suggesting a considerable degree of plasticity of the wall. However, the rate of enzyme digestion of the wall may have been modified, indicating that changes in wall structure persist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号