首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This highlight article describes three Alzheimer's disease (AD) studies presented at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms for producing neurotoxic beta-amyloid (Abeta) peptides. One group described the poor kinetics of BACE 1 for cleaving the wild-type (WT) beta-secretase site of APP found in most AD patients. They showed that cathepsin D displays BACE 1-like specificity and cathepsin D is 280-fold more abundant in human brain than BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the WT beta-secretase site, they suggested continuing the search for additional beta-secretase(s). The second group reported cathepsin B as an alternative beta-secretase possessing excellent kinetic efficiency and specificity for the WT beta-secretase site. Significantly, inhibitors of cathepsin B improved memory, with reduced amyloid plaques and decreased Abeta(40/42) in brains of AD animal models expressing amyloid precursor protein containing the WT beta-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Abeta. Results showed that cathepsin B, but not BACE 1, efficiently cleaves the WT beta-secretase isoaspartate site. Furthermore, cyclization of N-terminal Glu by glutaminyl cyclase generates highly amyloidogenic pGluAbeta(3-40/42). These presentations suggest cathepsin B and glutaminyl cyclase as potential new AD therapeutic targets.  相似文献   

2.
Vassar R 《Neuron》2007,54(5):671-673
BACE initiates the production of beta-amyloid (Abeta), the likely cause of Alzheimer's disease (AD). In this issue of Neuron, Tesco et al. show that during apoptosis caspase-3 cleaves the adaptor protein GGA3, which is required for BACE lysosomal degradation, consequently stabilizing BACE and elevating Abeta generation.  相似文献   

3.
Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity   总被引:2,自引:0,他引:2  
Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Abeta protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and beta-secretase activity are due to posttranslational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Abeta. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a GGA3-dependent mechanism regulating BACE levels and beta-secretase activity. This mechanism may explain increased cerebral levels of BACE and Abeta following cerebral ischemia and existing in AD.  相似文献   

4.
Amyloid beta-peptide (Abeta) is implicated as the major causative agent in Alzheimer's disease (AD). Abeta is produced by the processing of the amyloid precursor protein (APP) by BACE1 (beta-secretase) and gamma-secretase. Many inhibitors have been developed for the secretases. However, the inhibitors will interfere with the processing of not only APP but also of other secretase substrates. In this study, we describe the development of inhibitors that prevent production of Abeta by specific binding to the beta-cleavage site of APP. We used the hydropathic complementarity (HC) approach for the design of short peptide inhibitors. Some of the HC peptides were bound to the substrate peptide (Sub W) corresponding to the beta-cleavage site of APP and blocked its cleavage by recombinant human BACE1 (rhBACE1) in vitro. In addition, HC peptides specifically inhibited the cleavage of Sub W, and not affecting other BACE1 substrates. Chemical modification allowed an HC peptide (CIQIHF) to inhibit the processing of APP as well as the production of Abeta in the treated cells. Such novel APP-specific inhibitors will provide opportunity for the development of drugs that can be used for the prevention and treatment of AD with minimal side effects.  相似文献   

5.
APP processing is regulated by cytoplasmic phosphorylation   总被引:14,自引:0,他引:14       下载免费PDF全文
Amyloid-beta peptide (Abeta) aggregate in senile plaque is a key characteristic of Alzheimer's disease (AD). Here, we show that phosphorylation of amyloid precursor protein (APP) on threonine 668 (P-APP) may play a role in APP metabolism. In AD brains, P-APP accumulates in large vesicular structures in afflicted hippocampal pyramidal neurons that costain with antibodies against endosome markers and the beta-secretase, BACE1. Western blot analysis reveals increased levels of T668-phosphorylated APP COOH-terminal fragments in hippocampal lysates from many AD but not control subjects. Importantly, P-APP cofractionates with endosome markers and BACE1 in an iodixanol gradient and displays extensive colocalization with BACE1 in rat primary cortical neurons. Furthermore, APP COOH-terminal fragments generated by BACE1 are preferentially phosphorylated on T668 verses those produced by alpha-secretase. The production of Abeta is significantly reduced when phosphorylation of T668 is either abolished by mutation or inhibited by T668 kinase inhibitors. Together, these results suggest that T668 phosphorylation may facilitate the BACE1 cleavage of APP to increase Abeta generation.  相似文献   

6.
The amyloidogenic pathway leading to the production and deposition of Abeta peptides, major constituents of Alzheimer disease senile plaques, is linked to neuronal metal homeostasis. The amyloid precursor protein binds copper and zinc in its extracellular domain, and the Abeta peptides also bind copper, zinc, and iron. The first step in the generation of Abeta is cleavage of amyloid precursor protein by the aspartic protease BACE1. Here we show that BACE1 interacts with CCS (the copper chaperone for superoxide dismutase-1 (SOD1)) through domain I and the proteins co-immunoprecipitate from rat brain extracts. We have also been able to visualize the co-transport of membranous BACE1 and soluble CCS through axons. BACE1 expression reduces the activity of SOD1 in cells consistent with direct competition for available CCS as overexpression of CCS restores SOD1 activity. Finally, we demonstrate that the twenty-four residue C-terminal domain of BACE1 binds a single Cu(I) atom with high affinity through cysteine residues.  相似文献   

7.
Wang YS  Beyer BM  Senior MM  Wyss DF 《Biochemistry》2005,44(50):16594-16601
Accumulation of the cytotoxic 40- to 42-residue beta-amyloid peptide represents the primary pathological process in Alzheimer's disease (AD). BACE1 (beta-site APP cleaving enzyme 1) is responsible for the initial required step in the neuronal amyloidogenic processing of beta-amyloid precursor protein and is a major drug target for the therapeutic intervention of AD. In the present study, BACE1 is initially synthesized as an immature precursor protein containing part of the pre domain and the entire pro domain, and undergoes autocatalytic conversion to yield the well-folded mature BACE1 enzyme. To understand the mechanism of the conversion and the role of the pro domain, we monitored the autocatalytic conversion of BACE1 by heteronuclear NMR spectroscopy and used chemical shift perturbations as a probe to study the structural changes accompanying the autocatalytic conversion. NMR data revealed local conformational changes from a partially disordered to a well-folded conformation associated with the conversion. The conformational changes are largely concentrated in the NH(2)-terminal lobe. Conversely, the active site conformations are conserved during the autocatalytic conversion. The precursor and mature BACE1 proteins were further characterized for their ability to interact with a substrate-based transition state BACE1 peptide inhibitor. The precursor BACE1 rapidly adopted the bound conformation in the presence of the inhibitor, which is identical to the bound conformation of the mature protein. The interaction of the inhibitor with both the precursor BACE1 and the fully processed BACE1 is in slow exchange on the NMR time scale, indicating a tight binding interaction. Overall, the NMR data demonstrated that the pro domain does not hinder inhibitor binding and may assist in the proper folding of the protein. The fully processed BACE1 represents a high quality well-folded protein which is highly stable over a long period of time, and is suitable for evaluation of inhibitor binding by NMR for drug intervention.  相似文献   

8.
Mounting evidence indicates that aberrant production and aggregation of amyloid beta-peptide (Abeta)-(1-42) play a central role in the pathogenesis of Alzheimer disease (AD). Abeta is produced when amyloid precursor protein (APP) is cleaved by beta- and gamma-secretases at the N and C termini of the Abeta domain, respectively. The beta-secretase is membrane-bound aspartyl protease, most commonly known as BACE1. Because BACE1 cleaves APP at the N terminus of the Abeta domain, it catalyzes the first step in Abeta generation. PAR-4 (prostate apoptosis response-4) is a leucine zipper protein that was initially identified to be associated with neuronal degeneration and aberrant Abeta production in models of AD. We now report that the C-terminal domain of PAR-4 is necessary for forming a complex with the cytosolic tail of BACE1 in co-immunoprecipitation assays and in vitro pull-down experiments. Overexpression of PAR-4 significantly increased, whereas silencing of PAR-4 expression by RNA interference significantly decreased, beta-secretase cleavage of APP. These results suggest that PAR-4 may be directly involved in regulating the APP cleavage activity of BACE1. Because the increased BACE1 activity observed in AD patients does not seem to arise from genetic mutations or polymorphisms in BACE1, the identification of PAR-4 as an endogenous regulator of BACE1 activity may have significant implications for developing novel therapeutic strategies for AD.  相似文献   

9.
The incidence of Alzheimer disease (AD) and vascular dementia is greatly increased following cerebral ischemia and stroke in which hypoxic conditions occur in affected brain areas. beta-Amyloid peptide (Abeta), which is derived from the beta-amyloid precursor protein (APP) by sequential proteolytic cleavages from beta-secretase (BACE1) and presenilin-1 (PS1)/gamma-secretase, is widely believed to trigger a cascade of pathological events culminating in AD and vascular dementia. However, a direct molecular link between hypoxic insults and APP processing has yet to be established. Here, we demonstrate that acute hypoxia increases the expression and the enzymatic activity of BACE1 by up-regulating the level of BACE1 mRNA, resulting in increases in the APP C-terminal fragment-beta (betaCTF) and Abeta. Hypoxia has no effect on the level of PS1, APP, and tumor necrosis factor-alpha-converting enzyme (TACE, an enzyme known to cleave APP at the alpha-secretase cleavage site). Sequence analysis, mutagenesis, and gel shift studies revealed binding of HIF-1 to the BACE1 promoter. Overexpression of HIF-1alpha increases BACE1 mRNA and protein level, whereas down-regulation of HIF-1alpha reduced the level of BACE1. Hypoxic treatment fails to further potentiate the stimulatory effect of HIF-1alpha overexpression on BACE1 expression, suggesting that hypoxic induction of BACE1 expression is primarily mediated by HIF-1alpha. Finally, we observed significant reduction in BACE1 protein levels in the hippocampus and the cortex of HIF-1alpha conditional knock-out mice. Our results demonstrate an important role for hypoxia/HIF-1alpha in modulating the amyloidogenic processing of APP and provide a molecular mechanism for increased incidence of AD following cerebral ischemic and stroke injuries.  相似文献   

10.
BACE1 interacts with nicastrin   总被引:4,自引:0,他引:4  
Beta-amyloid peptide (Abeta) is generated through the proteolytic cleavage of beta-amyloid precursor protein (APP) by beta- and gamma-secretases. The beta-secretase, BACE1, initiates Abeta formation followed by gamma-cleavage within the APP transmembrane domain. Although BACE1 localizes in the transGolgi network (TGN), its physiological substrates and modulators are not known. In addition, the relationship to other secretase(s) also remains unidentified. Here, we demonstrate that BACE1 binds to nicastrin, a component of gamma-secretase complexes, in vitro, and that nicastrin activates beta-secretase activity in COS-7 cells.  相似文献   

11.
A key factor in Alzheimer's disease (AD) is the beta-secretase activity that is required for the production of beta-amyloid (Abeta) peptide from its amyloid precursor protein (APP) precursor. In this study, the majority of Abeta secretion from neuronal chromaffin cells was found to occur via the regulated secretory pathway, compared with the constitutive secretory pathway; therefore, beta-secretase activity in the regulated secretory pathway was examined for the production and secretion of Abeta in chromaffin cells obtained from in vivo adrenal medullary tissue. The presence of Abeta(1-40) in APP-containing chromaffin vesicles, which represent regulated secretory vesicles, was demonstrated by radioimmunoassay (RIA) and reverse-phase high-performance liquid chromatography. These vesicles also contain Abeta(1-42), measured by RIA. Significantly, regulated secretion of Abeta(1-40) from chromaffin cells represented the majority of secreted Abeta (> 95% of total secreted Abeta), compared with low levels of constitutively secreted Abeta(1-40). These results indicate the importance of Abeta production and secretion in the regulated secretory pathway as a major source of extracellular Abeta. Beta-secretase activity in isolated chromaffin vesicles was detected with the substrate Z-Val-Lys-Met-/MCA (methylcoumarinamide) that contains the beta-secretase cleavage site. Optimum beta-secretase activity in these vesicles required reducing conditions and acidic pH (pH 5-6), consistent with the in vivo intravesicular environment. Evidence for cysteine protease activity was shown by E64c inhibition of Z-Val-Lys-Met-MCA-cleaving activity, and E64c inhibition of Abeta(1-40) production in isolated chromaffin vesicles. Chromatography resolved the beta-secretase activity into two distinct proteolytic pathways consisting of: (i) direct cleavage of the beta-secretase site at Met-/Asp by two cysteine proteolytic activities represented by peaks Il-A and Il-B, and (ii) an aminopeptidase-dependent pathway represented by peak I cysteine protease activity that cleaves between Lys-/Met, followed by Met-aminopeptidase that would generate the beta-secretase cleavage site. Treatment of chromaffin cells in primary culture with the cysteine protease inhibitor E64d reduced the production of the beta-secretase product, a 12-14 kDa C-terminal APP fragment. In addition, BACE 1 and BACE 2 were detected in chromaffin vesicles; BACE 1 represented a small fraction of total beta-secretase activity in these vesicles. These results illustrate that multiple cysteine proteases, in combination with BACE 1, contribute to beta-secretase activity in the regulated secretory pathway. These results complement earlier findings for BACE 1 as beta3-secretase for Abeta production in the constitutive secretory pathway that provides basal secretion of Abeta into conditioned media. These findings suggest that drug inhibition of several proteases may be required for reducing Abeta levels as a potential therapeutic approach for AD.  相似文献   

12.
Beta-amyloid (Abeta) peptides that accumulate in Alzheimer disease are generated from the beta-amyloid precursor protein (betaAPP) by cleavages by beta-secretase BACE1 and by presenilin-dependent gamma-secretase activities. Very few data document a putative cross-talk between these proteases and the regulatory mechanisms underlying such interaction. We show that presenilin deficiency lowers BACE1 maturation and affects both BACE1 activity and promoter transactivation. The specific gamma-secretase inhibitor DFK167 triggers the decrease of BACE1 activity in wild-type but not in presenilin-deficient fibroblasts. This decrease is also elicited by catalytically inactive gamma-secretase. The overexpression of APP intracellular domain (AICD), the gamma/epsilon-secretase-derived C-terminal product of beta-amyloid precursor protein, does not modulate BACE1 activity or promoter transactivation in fibroblasts and does not alter BACE1 expression in AICD transgenic brains of mice. A DFK167-sensitive increase of BACE1 activity is observed in cells overexpressing APPepsilon (the N-terminal product of betaAPP generated by epsilon-secretase cleavage harboring the Abeta domain but lacking the AICD sequence), suggesting that the production of Abeta could account for the modulation of BACE1. Accordingly, we show that HEK293 cells overexpressing wild-type betaAPP exhibit a DFK167-sensitive increase in BACE1 promoter transactivation that is increased by the Abeta-potentiating Swedish mutation. This effect was mimicked by exogenous application of Abeta42 but not Abeta40 or by transient transfection of cDNA encoding Abeta42 sequence. The IkappaB kinase inhibitor BMS345541 prevents Abeta-induced BACE1 promoter transactivation suggesting that NFkappaB could mediate this Abeta-associated phenotype. Accordingly, the overexpression of wild-type or Swedish mutated betaAPP does not modify the transactivation of BACE1 promoter constructs lacking NFkappaB-responsive element. Furthermore, APP/beta-amyloid precursor protein-like protein deficiency does not affect BACE1 activity and expression. Overall, these data suggest that physiological levels of endogenous Abeta are not sufficient per se to modulate BACE1 promoter transactivation but that exacerbated Abeta production linked to wild-type or Swedish mutated betaAPP overexpression modulates BACE1 promoter transactivation and activity via an NFkappaB-dependent pathway.  相似文献   

13.
Beta-APP cleaving enzyme (BACE) is responsible for the first of two proteolytic cleavages of the APP protein that together lead to the generation of the Alzheimer's disease-associated Abeta peptide. It is widely believed that halting the production of Abeta peptide, by inhibition of BACE, is an attractive therapeutic modality for the treatment of Alzheimer's disease. BACE is an aspartyl protease, and there is significant effort in the pharmaceutical community to apply traditional design methods to the development of active site-directed inhibitors of this enzyme. We report here the discovery of a ligand binding pocket within the catalytic domain of BACE that is distinct from the enzymatic active site (i.e., an exosite). Peptides, initially identified from combinatorial phage peptide libraries, contain the sequence YPYF(I/L)P(L/I) and bind specifically to this exosite, even in the presence of saturating concentrations of active site-directed inhibitors. Binding of peptides to the BACE exosite leads to a concentration-dependent inhibition of proteolysis for APP-related, protein-based substrates of BACE. The discovery of this exosite opens new opportunities for the identification and development of novel and potentially selective small molecule inhibitors of BACE that act through exosite, rather than active site, binding interactions.  相似文献   

14.
BACE1 (beta-secretase) is a transmembrane aspartic protease that cleaves the beta-amyloid precursor protein and generates the amyloid beta peptide (Abeta). BACE1 cycles between the cell surface and the endosomal system many times and becomes activated interconvertibly during its cellular trafficking, leading to the production of Abeta. Here we report the crystal structure of the catalytically active form of BACE1. The active form has novel structural features involving the conformation of the flap and subsites that promote substrate binding. The functionally essential residues and water molecules are well defined and play a key role in the iterative activation of BACE1. We further describe the crystal structure of the dehydrated form of BACE1, showing that BACE1 activity is dependent on the dynamics of a catalytically required Asp-bound water molecule, which directly affects its catalytic properties. These findings provide insight into a novel regulation of BACE1 activity and elucidate how BACE1 modulates its activity during cellular trafficking.  相似文献   

15.
Alzheimer's disease (AD) is characterized by brain plaques containing the beta-amyloid peptide (Abeta). One approach for treating AD is by blocking Abeta aggregation. Activity-dependent neuroprotective protein contains a peptide, NAP that protects neurons in culture against Abeta toxicity. Here, NAP was shown to inhibit Abeta aggregation using: (1) fluorimetry; (2) electron microscopy; (3) high-throughput screening of Abeta deposition onto a synthetic template (synthaloid); and (4) Congo Red staining of neurons. Further assays showed biotin-NAP binding to Abeta. These results suggest that part of the neuroprotective mechanism exerted by NAP is through modulation of toxic protein folding in the extracellular milieu.  相似文献   

16.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

17.
β-Site APP-cleaving enzyme (BACE1) cleaves the amyloid precursor protein (APP) at the β-secretase site to initiate the production of Aβ peptides. These accumulate to form toxic oligomers and the amyloid plaques associated with Alzheimer's disease (AD). An increase of BACE1 levels in the brain of AD patients has been mostly attributed to alterations of its intracellular trafficking. Golgi-associated adaptor proteins, GGA sort BACE1 for export to the endosomal compartment, which is the major cellular site of BACE1 activity. BACE1 undergoes recycling between endosome, trans-Golgi network (TGN), and the plasma membrane, from where it is endocytosed and either further recycled or retrieved to the endosome. Phosphorylation of Ser498 facilitates BACE1 recognition by GGA1 for retrieval to the endosome. Ubiquitination of BACE1 C-terminal Lys501 signals GGA3 for exporting BACE1 to the lysosome for degradation. In addition, the retromer mediates the retrograde transport of BACE1 from endosome to TGN. Decreased levels of GGA proteins and increased levels of retromer-associated sortilin have been associated with AD. Both would promote the co-localization of BACE1 and the amyloid precursor protein in the TGN and endosomes. Decreased levels of GGA3 also impair BACE1 degradation. Further understanding of BACE1 trafficking and its regulation may offer new therapeutic approaches for the treatment of Alzheimer's disease.  相似文献   

18.
The amyloid beta peptides (Abeta) are the major components of the senile plaques characteristic of Alzheimer's disease. Abeta peptides are generated from the cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Beta-secretase (BACE), a type-I transmembrane aspartyl protease, cleaves APP first to generate a 99-amino acid membrane-associated fragment (CT99) containing the N terminus of Abeta peptides. Gamma-secretase, a multi-protein complex, then cleaves within the transmembrane region of CT99 to generate the C termini of Abeta peptides. The production of Abeta peptides is, therefore, dependent on the activities of both BACE and gamma-secretase. The cleavage of APP by BACE is believed to be a prerequisite for gamma-secretase-mediated processing. In the present study, we provide evidence both in vitro and in cells that BACE-mediated cleavage between amino acid residues 34 and 35 (Abeta-34 site) in the Abeta region is dependent on gamma-secretase activity. In vitro, the Abeta-34 site is processed specifically by BACE1 and BACE2, but not by cathepsin D, a closely related aspartyl protease. Moreover, the cleavage of the Abeta-34 site by BACE1 or BACE2 occurred only when Abeta 1- 40 peptide, a gamma-secretase cleavage product, was used as substrate, not the non-cleaved CT99. In cells, overexpression of BACE1 or BACE2 dramatically increased the production of the Abeta 1-34 species. More importantly, the cellular production of Abeta 1-34 species induced by overexpression of BACE1 or BACE2 was blocked by a number of known gamma-secretase inhibitors in a concentration-dependent manner. These gamma-secretase inhibitors had no effect on enzymatic activity of BACE1 or BACE2 in vitro. Our data thus suggest that gamma-secretase cleavage of CT99 is a prerequisite for BACE-mediated processing at Abeta-34 site. Therefore, BACE and gamma-secretase activity can be mutually dependent.  相似文献   

19.
Introducing mutations within the amyloid precursor protein (APP) that affect beta- and gamma-secretase cleavages results in amyloid plaque formation in vivo. However, the relationship between beta-amyloid deposition and the subcellular site of Abeta production is unknown. To determine the effect of increasing beta-secretase (BACE) activity on Abeta deposition, we generated transgenic mice overexpressing human BACE. Although modest overexpression enhanced amyloid deposition, high BACE overexpression inhibited amyloid formation despite increased beta-cleavage of APP. However, high BACE expression shifted the subcellular location of APP cleavage to the neuronal perikarya early in the secretory pathway. These results suggest that the production, clearance, and aggregation of Abeta peptides are highly dependent on the specific neuronal subcellular domain wherein Abeta is generated and highlight the importance of perikaryal versus axonal APP proteolysis in the development of Abeta amyloid pathology in Alzheimer's disease.  相似文献   

20.
BACE (β-site amyloid precursor protein cleaving enzyme, β-secretase) is a type-I membrane protein which functions as an aspartic protease in the production of β-amyloid peptide, a causative agent of Alzheimer's disease. Its cytoplasmic tail has a characteristic acidic-cluster dileucine motif recognized by the VHS domain of adaptor proteins, GGAs (Golgi-localizing, γ-adaptin ear homology domain, ARF-interacting). Here we show that BACE is colocalized with GGAs in the trans -Golgi network and peripheral structures, and phosphorylation of a serine residue in the cytoplasmic tail enhances interaction with the VHS domain of GGA1 by about threefold. The X-ray crystal structure of the complex between the GGA1-VHS domain and the BACE C-terminal peptide illustrates a similar recognition mechanism as mannose 6-phosphate receptors except that a glutamine residue closes in to fill the gap created by the shorter BACE peptide. The serine and lysine of the BACE peptide point their side chains towards the solvent. However, phosphorylation of the serine affects the lysine side chain and the peptide backbone, resulting in one additional hydrogen bond and a stronger electrostatic interaction with the VHS domain, hence the reversible increase in affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号