首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Towards an understanding of position effect variegation   总被引:16,自引:0,他引:16  
Most variegating position effects are a consequence of placing a euchromatic gene adjacent to alpha-heterochromatin. In such rearrangements, the affected locus is inactivated in some cells, but not others, thereby giving rise to a mosaic tissue of mutant and wild-type cells. A detailed examination of the molecular structure of three variegating white mottled mutations of Drosophila melanogaster, all of which are inversions of the X chromosome, reveals that their euchromatic breakpoints are clustered and located approximately 25 kb downstream of the white promoter and that the heterochromatic sequences to which the white locus is adjoined are transposons. An analysis of three revertants of the wm4 mutation, created by relocating white to another euchromatic site, demonstrates that they also carry some heterochromatically derived sequences with them upon restoration of the wild-type phenotype. This suggests that variegation is not controlled from a heterochromatic sequence immediately adjacent to the variegating gene but rather from some site more internal to the heterochromatic domain itself. As a consequence of this observation we have proposed a boundary model for understanding how heterochromatic domains may be formed. It has been recognized for many years that the phenotype of variegating position effects may be altered by the presence of trans-acting dominant mutations that act to either enhance or suppress variegation. Using P-element mutagenesis, we have induced and examined 12 dominant enhancers of variegation that represent four loci on the second and third chromosomes. Most of these mutations are cytologically visible duplications or deficiencies. They exert their dominant effects through changes in the copy number of wild-type genes and can be divided into two reciprocally acting classes. Class I modifiers are genes that act as enhancers of variegation when duplicated and as suppressors when mutated or deficient. Conversely, class II modifiers are genes that enhance when mutated or deleted and suppress when duplicated. The available data indicate that, in Drosophila, there are 20-30 loci capable of dominantly modifying variegation. Of these, most appear to be of the class I type whereas only two class II modifiers have been identified so far.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Position effect variegation (PEV) results from the juxtaposition of a euchromatic gene to heterochromatin. In its new position the gene is inactivated in some cells and not in others. This mosaic expression is consistent with variability in the spread of heterochromatin from cell to cell. As many components of heterochromatin are likely to be produced in limited amounts, the spread of heterochromatin into a normally euchromatic region should be accompanied by a concomitant loss or redistribution of the protein components from other heterochromatic regions. We have shown that this is the case by simultaneously monitoring variegation of a euchromatic and a heterochromatic gene associated with a single chromosome rearrangement. Secondly, if several heterochromatic regions of the genome share limited components of heterochromatin, then some variegating rearrangements should compete for these components. We have examined this hypothesis by testing flies with combinations of two or more different variegating rearrangements. Of the nine combinations of pairs of variegating rearrangements we studied, seven showed nonreciprocal interactions. These results imply that many components of heterochromatin are both shared and present in limited amounts and that they can transfer between chromosomal sites. Consequently, even nonvariegation portions of the genome will be disrupted by re-allocation of heterochromatic proteins associated with PEV. These results have implications for models of PEV.  相似文献   

4.
Talbert PB  Henikoff S 《Genetics》2000,154(1):259-272
In Drosophila, heterochromatin causes mosaic silencing of euchromatic genes brought next to it by chromosomal rearrangements. Silencing has been observed to "spread": genes closer to the heterochromatic rearrangement breakpoint are silenced more frequently than genes farther away. We have examined silencing of the white and roughest genes in the variegating rearrangements In(1)w(m4), In(1)w(mMc), and In(1)w(m51b). Eleven stocks bearing these chromosomes differ widely in the strength of silencing of white and roughest. Stock-specific differences in the relative frequencies of inactivation of white and roughest were found that map to the white-roughest region or the adjacent heterochromatin. Most stock-specific differences did not correlate with gross differences in the heterochromatic content of the rearranged chromosomes; however, two stocks, In(1)w(m51b) and In(1)w(mMc), were found to have anomalous additional heterochromatin that may act in trans to suppress variegating alleles. In comparing different stocks, the frequency of silencing of the roughest gene, which is more distant from heterochromatin, does not correlate with the frequency of silencing of the more proximal white gene on the same chromosome, in contradiction to the expectation of models of continuous linear propagation of silencing. We frequently observed rough eye tissue that is pigmented, as though an active white gene is skipped.  相似文献   

5.
Konev AY  Yan CM  Acevedo D  Kennedy C  Ward E  Lim A  Tickoo S  Karpen GH 《Genetics》2003,165(4):2039-2053
Heterochromatin is a major component of higher eukaryotic genomes, but progress in understanding the molecular structure and composition of heterochromatin has lagged behind the production of relatively complete euchromatic genome sequences. The introduction of single-copy molecular-genetic entry points can greatly facilitate structure and sequence analysis of heterochromatic regions that are rich in repeated DNA. In this study, we report the isolation of 502 new P-element insertions into Drosophila melanogaster centric heterochromatin, generated in nine different genetic screens that relied on mosaic silencing (position-effect variegation, or PEV) of the yellow gene present in the transposon. The highest frequencies of recovery of variegating insertions were observed when centric insertions were used as the source for mobilization. We propose that the increased recovery of variegating insertions from heterochromatic starting sites may result from the physical proximity of different heterochromatic regions in germline nuclei or from the association of mobilizing elements with heterochromatin proteins. High frequencies of variegating insertions were also recovered when a potent suppressor of PEV (an extra Y chromosome) was present in both the mobilization and selection generations, presumably due to the effects of chromatin structure on P-element mobilization, insertion, and phenotypic selection. Finally, fewer variegating insertions were recovered after mobilization in females, in comparison to males, which may reflect differences in heterochromatin structure in the female and male germlines. FISH localization of a subset of the insertions confirmed that 98% of the variegating lines contain heterochromatic insertions and that these schemes produce a broader distribution of insertion sites. The results of these schemes have identified the most efficient methods for generating centric heterochromatin P insertions. In addition, the large collection of insertions produced by these screens provides molecular-genetic entry points for mapping, sequencing, and functional analysis of Drosophila heterochromatin.  相似文献   

6.
The functional consequences of long-range nuclear reorganization were studied in a cell-by-cell analysis of gene expression and long-range chromosomal interactions in the Drosophila eye and eye imaginal disk. Position-effect variegation was used to stochastically perturb gene expression and probe nuclear reorganization. Variegating genes on rearrangements of Chromosomes X, 2, and 3 were probed for long-range interactions with heterochromatin. Studies were conducted only in tissues known to express the variegating genes. Nuclear structure was revealed by fluorescence in situ hybridization with probes to the variegating gene and heterochromatin. Gene expression was determined alternately by immunofluorescence against specific proteins and by eye pigment autofluorescence. This allowed cell-by-cell comparisons of nuclear architecture between cells in which the variegating gene was either expressed or silenced. Very strong correlations between heterochromatic association and silencing were found. Expressing cells showed a broad distribution of distances between variegating genes and their own centromeric heterochromatin, while silenced cells showed a very tight distribution centered around very short distances, consistent with interaction between the silenced genes and heterochromatin. Spatial and temporal analysis of interactions with heterochromatin indicated that variegating genes primarily associate with heterochromatin in cells that have exited the cell cycle. Differentiation was not a requirement for association, and no differences in association were observed between cell types. Thus, long-range interactions between distal chromosome regions and their own heterochromatin have functional consequences for the organism.  相似文献   

7.
We examined the genetic, morphological, and molecular effects of position effect variegation inDrosophila, and the effects of mutations that either suppress [Su(var)] or enhance [E(var)] this phenomenon. All eightSu(var) mutations examined strongly suppress the inactivation of variegating alleles of the genes white [In(l) w m4 ], brown [In (2R)bw VDe2 ] and Stubble [T(2;3)Sb V ]. TheE(var) mutation enhances variegation of these loci. The chromosomal region 3C-E (26 bands) which includes the white locus is usually packaged as heterochromatin in salivary glands of the variegating strainw m4 . Addition of any of theSu(var) mutations restores a more euchromatic morphology to this region. In situ hybridization to polytene chromosomes and DNA blot analyses of gene copy number demonstrate that the DNA of thew + gene is less accessible to its probe in the variegatingw m4 strain than it is in the wildtype or variegation-suppressed strains. Blot analysis of larval salivary gland DNA indicates that the white gene copy number does not vary among the strains. Hence, the differences in binding of thew + gene probe in the variegating and variegation-suppressed strains reflect differences in chromosomal packaging rather than alterations in gene number. The effects of variegation and theSu(var) mutations on chromatin structure were analyzed further by DNAse I digestion and DNA blot hybridization. In contrast to their dramatic effects on chromosomal morphology and gene expression, theSu(var) mutations had negligible effects on nuclease sensitivity of the white gene chromatin. We suggest that the changes in gene expression resulting from position effect variegation and the action of theSu(var) mutations involve alterations in chromosomal packaging.  相似文献   

8.
9.
The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression.  相似文献   

10.
C. P. Bishop 《Genetics》1992,132(4):1063-1069
The results of an investigation into intrinsic differences in the formation of two different heterochromatic domains are presented. The study utilized two different position effect variegation mutants in Drosophila melanogaster for investigating the process of compacting different stretches of DNA into heterochromatin. Each stretch of DNA encodes for a gene that affects different aspects of bristle morphology. The expression of each gene is prevented when it is compacted into heterochromatin thus the genes serve as effective reporter systems to monitor the spread of heterochromatin. Both variegating mutants are scored in the same cell such that environmental and genetic background differences are unambiguously eliminated. Any differences observed in the repression of the two genes must therefore be the result of intrinsic differences in the heterochromatic compaction process for the two stretches of DNA. Studies of the effects different enhancers of variegation have upon the compaction of the two genes indicate each compaction event occurs independently of the other, and that different components are involved in the two processes. These results are discussed with regard to spreading heterochromatin and the role this process may play in regulating gene expression.  相似文献   

11.
In Drosophila melanogaster, some clusters of P transgenes ( P-lacZ-white) display a variegating phenotype for the white marker in the eye, a phenomenon termed "Repeat-Induced Gene Silencing" (RIGS). We have tested the influence of the P element repression state (P cytotype) on the eye phenotype of several P-lac-w clusters that differ in transgene copy number or genomic insertion site. P element-encoded regulatory products strongly enhance RIGS. The effect occurs in both sexes, is detectable with clusters having at least three copies and is observed at both genomic locations tested (cytogenetic regions 50C and 92E). Single variegating P-lac-w transgenes located in pericentromeric heterochromatin are not affected by P regulatory products. All P strain backgrounds tested enhance RIGS, including chromosomes bearing a single P element encoding a truncated P transposase or carrying a single internally deleted KP element. Therefore, clusters are highly sensitive to different types of P repressors. Finally, a chimeric gene in which the 5' portion of the P element is fused to the polyhomeotic coding sequence (ph(p1)) also strongly enhances silencing of P-lac-w clusters. These results have implications for the mechanism of action of the P repressors and show that P transgene clusters represent a new class of P-sensitive alleles, providing a simple assay for somatic P repression that can be completed in one generation.  相似文献   

12.
In Drosophila, clusters of P transgenes (P-lac-w) display a variegating phenotype for the w marker. In addition, X-ray-induced rearrangements of chromosomes bearing such clusters may lead to enhancement of the variegated phenotype. Since P-lacZ transgenes in subtelomeric heterochromatin have some P-element repression abilities, we tested whether P-lac-w clusters also have the capacity to repress P-element activity in the germline. One cluster (T-1), located on a rearranged chromosome (T2;3) and derived from a line bearing a variegating tandem array of seven P-lac-w elements, partially represses the dysgenic sterility (GD sterility) induced by P elements. This cluster also strongly represses in trans the expression of P-lacZ elements in the germline. This latter suppression shows a maternal effect. Finally, the combination of variegating P-lac-w clusters and a single P-lacZ reporter inserted in subtelomeric heterochromatic sequences at the X chromosome telomere (cytological site 1A) leads to strong repression of dysgenic sterility. These results show that repression of P-induced dysgenic sterility can be elicited in the absence of P elements encoding a polypeptide repressor and that a transgene cluster can repress the expression of a single homologous transgene at a nonallelic position. Implications for models of transposable element silencing are discussed.  相似文献   

13.
Weiler KS 《Genetics》2007,177(1):167-178
The importance of a gene's natural chromatin environment for its normal expression is poignantly illustrated when a change in chromosome position results in variable gene repression, such as is observed in position effect variegation (PEV) when the Drosophila melanogaster white (omega) gene is juxtaposed with heterochromatin. The Enhancer of variegation 3-9 [E(var)3-9] gene was one of over a hundred loci identified in screens for mutations that dominantly modify PEV. Haploinsufficiency for E(var)3-9 enhances omegam4 variegation, as would be expected from increased heterochromatin formation. To clarify the role of E(var)3-9 in chromosome structure, the gene has been cloned and its mutant alleles characterized. The involvement of E(var)3-9 in structure determination was supported by its reciprocal effects on euchromatic and heterochromatic PEV; E(var)3-9 mutations increased expression of a variegating heterochromatic gene in two tissue types. E(var)3-9 mutations also had a recessive phenotype, maternal effect lethality, which implicated E(var)3-9 function in an essential process during embryogenesis. Both phenotypes of E(var)3-9 mutations were consistent with its proposed function in promoting normal chromosome structure. The cloning of E(var)3-9 by classical genetic methods revealed that it encodes a protein with multiple zinc fingers, but otherwise novel sequence.  相似文献   

14.
G. Reuter  I. Wolff  B. Friede 《Chromosoma》1985,93(2):132-139
In position-effect variegation euchromatic genes are brought into the vicinity of heterochromatic sequences as a result of chromosomal rearrangements. This results in the inactivation of these genes in a proportion of cells causing a variegated phenotype. Tartof et al. (1984) have shown that the flanking heterochromatin in the w m4 variegating rearrangement in Drosophila melanogaster is homologous to the Type I inserts found in some portions of the rDNA repeats. We have studied the functional properties of these sequences using 51 revertant chromosomes, several variant lines of w m4 , strong enhancer mutations of position-effect variegation and X heterochromatin deletions. Our results suggest an array of tandemly repeated sequences showing additive effects and probably subject to magnification and reduction in number. Since only 3 of the 51 revertants isolated do not show variegation if strong enhancer mutations are introduced, only a very short sequence must be essential for the induction of white gene inactivation in w m4 . This suggests that the heterochromatic junction itself is sufficient to initiate the variegation of an adjacent gene. Parental source as well as paternal effects on the activity of these sequences have been detected. Revertant chromosomes of w m4 can be found after P-directed mutagenesis in hybrid dysgenic crosses suggesting mobile genetic elements at the breakpoints of inversion w m4 . These results are discussed with respect to the structural basis of positioneffect variegation as well as the function of certain heterochromatic sequences.  相似文献   

15.
P. Dimitri  C. Pisano 《Genetics》1989,122(4):793-800
Position effect variegation results from chromosome rearrangements which translocate euchromatic genes close to the heterochromatin. The euchromatin-heterochromatin association is responsible for the inactivation of these genes in some cell clones. In Drosophila melanogaster the Y chromosome, which is entirely heterochromatic, is known to suppress variegation of euchromatic genes. In the present work we have investigated the genetic nature of the variegation suppressing property of the D. melanogaster Y chromosome. We have determined the extent to which different cytologically characterized Y chromosome deficiencies and Y fragments suppress three V-type position effects: the Y-suppressed lethality, the white mottled and the brown dominant variegated phenotypes. We find that: (1) chromosomes which are cytologically different and yet retain similar amounts of heterochromatin are equally effective suppressors, and (2) suppression effect is positively related to the size of the Y chromosome deficiencies and fragments that we tested. It increases with increasing amounts of Y heterochromatin up to 60-80% of the entire Y, after which the effect reaches a plateau. These findings suggest suppression is a function of the amount of Y heterochromatin present in the genome and is not attributable to any discrete Y region.  相似文献   

16.
Transgenes inserted into the telomeric regions of Drosophila melanogaster chromosomes exhibit position effect variegation (PEV), a mosaic silencing characteristic of euchromatic genes brought into juxtaposition with heterochromatin. Telomeric transgenes on the second and third chromosomes are flanked by telomeric associated sequences (TAS), while fourth chromosome telomeric transgenes are most often associated with repetitious transposable elements. Telomeric PEV on the second and third chromosomes is suppressed by mutations in Su(z)2, but not by mutations in Su(var)2-5 (encoding HP1), while the converse is true for telomeric PEV on the fourth chromosome. This genetic distinction allowed for a spatial and molecular analysis of telomeric PEV. Reciprocal translocations between the fourth chromosome telomeric region containing a transgene and a second chromosome telomeric region result in a change in nuclear location of the transgene. While the variegating phenotype of the white transgene is suppressed, sensitivity to a mutation in HP1 is retained. Corresponding changes in the chromatin structure and inducible activity of an associated hsp26 transgene are observed. The data indicate that both nuclear organization and local chromatin structure play a role in this telomeric PEV.  相似文献   

17.
Polycomb group (PcG) genes of Drosophila are negative regulators of homeotic gene expression required for maintenance of determination. Sequence similarity between Polycomb and Su(var)205 led to the suggestion that PcG genes and modifiers of position-effect variegation (PEV) might function analogously in the establishment of chromatin structure. If PcG proteins participate directly in the same process that leads to PEV, PcG mutations should suppress PEV. We show that mutations in E(Pc), an unusual member of the PcG, suppress PEV of four variegating rearrangements: In(l)wm4, B(SV), T(2;3)Sb(V) and In(2R)bw(VDe2). Using reversion of a Pelement insertion, deficiency mapping, and recombination mapping as criteria, homeotic effects and suppression of PEV associated with E(Pc) co-map. Asx is an enhancer of PEV, whereas nine other PcG loci do not affect PEV. These results support the conclusion that there are fewer similarities between PcG genes and modifiers of PEV than previously supposed. However, E(Pc) appears to be an important link between the two groups. We discuss why Asx might act as an enhancer of PEV.  相似文献   

18.
19.
The vast majority of the >100 modifier genes of position-effect variegation (PEV) in Drosophila have been identified genetically as haplo-insufficient loci. Here, we describe pitkin(Dominant) (ptn(D)), a gain-of-function enhancer mutation of PEV. Its exceptionally strong enhancer effect is evident as elevated spreading of heterochromatin-induced gene silencing along euchromatic regions in variegating rearrangements. The ptn(D) mutation causes ectopic binding of the SU(VAR)3-9 heterochromatin protein at many euchromatic sites and, unlike other modifiers of PEV, it also affects stable position effects. Specifically, it induces silencing of white+ transgenes inserted at a wide variety of euchromatic sites. ptn(D) is associated with dominant female sterility. +/+ embryos produced by ptn(D)/+ females mated with wild-type males die at the end of embryogenesis, whereas the ptn(D)/+ sibling embryos arrest development at cleavage cycle 1-3, due to a combined effect of maternally provided mutant product and an early zygotic lethal effect of ptn(D). This is the earliest zygotic effect of a mutation so far reported in Drosophila. Germ-line mosaics show that ptn+ function is required for normal development in the female germ line. These results, together with effects on PEV and white+ transgenes, are consistent with the hypothesis that the ptn gene plays an important role in chromatin regulation during development of the female germ line and in early embryogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号