首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The expected number of species occurring in different numbers of reserves of the same total area is examined on different assumptions of the spatial distribution and the probability of extinction. The advantage of one large reserve or several smaller ones of equal total area depends on the spatial distributions of species and the stage after the establishement of reserves. In general, several smaller reserves maintain more species immediately after the establishments unless the spatial distribution are uniform or random, whereas one large reserve excels several smaller ones after some rare species have gone extinct unless the spatial distributions are strongly contagious. Since the extinction of rare species must be facilitated as the size of each reserve reduces, the area of a reserve should be larger than the critical area that ensures the persistence of the species. Hence it is concluded that one or a few large reserves are a better strategy in order to maintain the species diversity.  相似文献   

2.
Distribution and abundance patterns at the community and metacommunity scale can result from two distinct mechanisms. Random dispersal followed by non-random, site-specific mortality (species sorting) is the dominant paradigm in community ecology, while habitat selection provides an alternative, largely unexplored, mechanism with different demographic consequences. Rather than differential mortality, habitat selection involves redistribution of individuals among habitat patches based on perceived rather than realized fitness, with perceptions driven by past selection. In particular, habitat preferences based on species composition can create distinct patterns of positive and negative covariance among species, generating more complex linkages among communities than with random dispersal models. In our experiments, the mere presence of predatory fishes, in the absence of any mortality, reduced abundance and species richness of aquatic beetles by up to 80% in comparison with the results from fishless controls. Beetle species' shared habitat preferences generated distinct patterns of species richness, species composition and total abundance, matching large-scale field patterns previously ascribed to random dispersal and differential mortality. Our results indicate that landscape-level patterns of distribution and species diversity can be driven to a large extent by habitat selection behaviour, a critical, but largely overlooked, mechanism of community and metacommunity assembly.  相似文献   

3.
The analysis of size-frequency spatial distribution of three species of Cenomanian echinoids in a single fossil assemblage shows both intraspecific and interspecific horizontal segregation of the individuals parallel to the variations in silt and organic matter levels of the substrate. The exceptional preservation of echinoids. fossilized in the living position with part of their spines. and their multimodal size-frequency distribution, with no evidence of physical transportation. suggest that a catastrophic event resulted in the fossilization of the demographic structure of the populations. The assemblage. being the result of mass mortality of a community, corresponds to a census assemblage. Thus the patchy segregation of echinoids could not primarily be influenced by size-selective taphonomy (current winnowing, biological or mechanical destruction) but more likely determined by biological phcnomena like mortality and recruitment patterns, high juvenile growth, substrate selection and herd mode of life. Recent examples of spatial separation of adults and juveniles. given for different species of echinoids. show that these patchy distributions are widespread, and therefore may be a privileged source of fossil preservation of cohort's size-frequency distribution in catastrophic mortality. □ Palaeoecology, size-frequency distribution, demography, echinoids. spatangoids, cassiduloids, M ecaster , C atopygus , N ucleopygus .  相似文献   

4.
Damselfishes are an important element of the fauna of coral reefs. This study describes spatial patterns in the distribution of 15 species of damselfishes at Lizard Island, northern Great Barrier Reef (GBR). The aim of the work was to identify the spatial scales at which major changes in the composition and abundance of the fauna occurred. These patterns were then compared with previous studies in an attempt to determine if distributions followed general patterns at a range of localities. The assemblage found at Lizard Island was similar to that of reefs in the central GBR. The most important changes in the composition of the fauna occurred among reef zones. Shallow zones (the reef flat and crest) were dominated by herbivorous species while planktivorous and omnivorous species were most abundant in deeper zones (the reef slope). Densities of herbivorous damselfishes in shallow reef zones at Lizard Island averaged 45.5 individuals per 80 m2, a value comparable to densities found in similar zones on reefs in the central and southern GBR and at one locality in the Caribbean. Comparisons of relative distributions suggested that abundant species tend to be widely distributed among zones and habitats, while rare species have restricted distributions at Lizard Island. However, computer simulation of the sampling program suggested that the ability of our study to describe the distribution patterns of rare species was limited, despite intensive sampling. Correlations between breadth of distribution and abundance may have occurred simply because rare species were less likely to be recorded within a transect. Our results suggest that it will be difficult to compare the distribution patterns of species among studies. Furthermore, the interpretation of relative patterns of distribution at a single locality in terms of ecological specialization or partitioning may first require an assessment of the ability of the sampling program to accurately record spatial patterns.  相似文献   

5.
Aim  We tested whether the distribution of three common springtail species ( Gressittacantha terranova , Gomphiocephalus hodgsoni and Friesea grisea ) in Victoria Land (Antarctica) could be modelled as a function of latitude, longitude, altitude and distance from the sea.
Location  Victoria Land, Ross Dependency, Antarctica.
Methods  Generalized linear models were constructed using species presence/absence data relative to geographical features (latitude, longitude, altitude, distance from sea) across the species' entire ranges. Model results were then integrated with the known phylogeography of each species and hypotheses were generated on the role of climate as a major driver of Antarctic springtail distribution.
Results  Based on model selection using Akaike's information criterion, the species' distributions were: hump-shaped relative to longitude and monotonic with altitude for Gressittacantha terranova ; hump-shaped relative to latitude and monotonic with altitude for Gomphiocephalus hodgsoni ; and hump-shaped relative to longitude and monotonic with latitude, altitude and distance from the sea for Friesea grisea .
Main conclusions  No single distributional pattern was shared by the three species. While distributions were partially a response to climatic spatial clines, the patterns observed strongly suggest that past geological events have influenced the observed distributions. Accordingly, present-day spatial patterns are likely to have arisen from the interaction of historical and environmental drivers. Future studies will need to integrate a range of spatial and temporal scales to further quantify their respective roles.  相似文献   

6.
Although several factors influence herbivore insect distributions at any particular scale, the most important determinants are likely to differ between species with different life histories. Identifying what these factors are and how they relate to life history forms an important component of understanding the population dynamics of species, and the habitat requirements necessary for their conservation. The pupal stage of two wild silk moth species, Gonometa postica Walker and G. rufobrunnea Aurivillius (Lepidoptera: Lasiocampidae), is the target of harvesting practices that are totally dependent on the availability of pupae from natural populations. Consequently, and partly due to poor knowledge of the species' biology, there is substantial interest in the distribution of pupae among and within trees for both these species. It was investigated whether between- and within-tree pupal distributions in these two species are non-random, and if so, whether there are relationships between pupation site use and tree characteristics such as tree size, available pupation space and branch position. Between-tree patterns in pupal abundance were random in terms of absolute spatial position, but markedly non-random with respect to tree characteristics. The apparent G. postica pupae were aggregated on large larval host plants, whereas the cryptic G. rufobrunnea pupae were aggregated on non-host plants. These patterns reflect the life history differences of the two species. In contrast, at the within-tree scale, branch position, aspect and tree shape influenced pupation site choice similarly for both species. These patterns might be related to microclimate. Documenting between-tree and within-tree patterns in Gonometa pupal distributions is the first step towards explaining pupation site selection, as well as identifying possible evolutionarily selective factors in the species, and generating testable hypotheses from these.  相似文献   

7.
At the local scale, spatial aggregations in ant distribution are often thought to be driven by competitive interactions among dominant ant species, although niche preferences and habitat heterogeneity might also lead to patchiness. Nevertheless, competitive interactions might be particularly important in agroecosystems that are structurally more homogeneous than natural habitats. The spatial patterns of ants in two Australian vineyards were investigated by intensive pitfall trapping to examine if non‐random patterns occur and whether these might be the result of competitive species interactions as well as the influence of woody vegetation adjacent to the vineyards. Null model analyses suggested competitive species interactions within ant assemblages that might have been driven by numerically dominant species, even though both positive and negative associations between these were found. Consistent spatial aggregations indicated significant spatial overlap in distributions of some species. Such overlap suggests that potential coexistence might be attributed to temporal partitioning or differences in foraging strategies. The presence of woody vegetation had a marked influence on ant assemblage structure and competitive interactions, and might facilitate coexistence by increasing resource heterogeneity. The implications of these findings for sampling strategies and ecological processes within vineyards are discussed.  相似文献   

8.
There has been much recent interest in explaining patterns of body size variation within species assemblages. One observation is that frequency distributions of species' body size commonly exhibit a right-skew, even on a logarithmic scale. Here we examine the species' body size distributions in two assemblages of large Costa Rican moths. We find that neither adult Sphingidae or Saturniidae exhibit the classic log right-skewed pattern. Furthermore, the species' body size distributions in these two groups are markedly different, which we suggest is a result of differential selective pressures related to resource and mate acquisition. For Sphingidae, we show (1) that body size is positively correlated with tongue length, and (2) that the distribution of sphingid body sizes/tongue lengths closely matches the distribution of flower corolla tube depths in sphingid-pollinated plants. Thus, morphological fitting between plants and pollinators seems to underlie the species' body size distribution of this sphingid assemblage. We discuss the significance of these results in the context of current theory on mechanisms driving species' body size distributions. Finally, we present an evolutionary hypothesis for the diversity of body sizes seen in this sphingid assemblage related to reciprocal interactions between plants and pollinators. This hypothesis can be tested within a rigorous phylogenetic framework, although a systematic phylogenetic analysis of Neotropical Sphingidae does not currently exist.  相似文献   

9.
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent.  相似文献   

10.
There have been several attempts to build a unified framework for macroecological patterns. However, these have mostly been based either on questionable assumptions or have had to be parameterized to obtain realistic predictions. Here, we propose a new model explicitly considering patterns of aggregated species distributions on multiple spatial scales, the property which lies behind all spatial macroecological patterns, using the idea we term 'generalized fractals'. Species' spatial distributions were modelled by a random hierarchical process in which the original 'habitat' patches were randomly replaced by sets of smaller patches nested within them, and the statistical properties of modelled species assemblages were compared with macroecological patterns in observed bird data. Without parameterization based on observed patterns, this simple model predicts realistic patterns of species abundance, distribution and diversity, including fractal-like spatial distributions, the frequency distribution of species occupancies/abundances and the species–area relationship. Although observed macroecological patterns may differ in some quantitative properties, our concept of random hierarchical aggregation can be considered as an appropriate null model of fundamental macroecological patterns which can potentially be modified to accommodate ecologically important variables.  相似文献   

11.
Abstract. Three term covariance analysis is used to investigate interspecific association at a range of spatial scales, using both density and presence/absence data to evaluate the strength of species interactions. This procedure also investigates the relationship between the spatial patterns of species. These methods are applied to the vegetation on a series of glacial moraines near Mt. Robson, British Columbia, Canada, in order to test whether the plants of different species and their patterns become more independent and more random during succession. Another hypothesis tested is that if a species exerts a positive influence on others by increasing soil nutrients, this effect decreases with surface age. The vegetation analysed supports both these hypotheses to the extent that most species pairs have maximum covariance intensity on medium aged surfaces. The covariance-blocksize graphs derived from density data and from presence/absence data were qualitatively similar in their trends; however, the results are sufficiently different to suggest that the relationships among species can be subtle, affecting density rather than presence. The results also show that the affect of scale on species associations is more complex than simple models predict.  相似文献   

12.
Biodiversity macroecology deals with the commonly measured variables of abundance, distribution, occupancy, and range size across two scales: the local (or α) and regional (γ). There are ca. 15 patterns consisting of the frequency distributions of the variables, variables as a function of area or sample size, and interrelationships between variables that appear to be very general if not close to universal. A number of links can be drawn between these patterns. In particular, I show that local communities can be seen as random samples of the regional pool, but only as a special form of sampling that is autocorrelated due to the spatial clumping of individuals within a species. I describe two distinct sets of mathematical machinery that can start with the regional species abundance distribution and then predict local species richness, local species abundance distributions, and β-diversity (in the form of species area relationships or decay of similarity with distance). I conclude by examining some of the implications of the fact that biodiversity patterns are linked by autocorrelated sampling.  相似文献   

13.
Summary Patterns of egg distribution and survivorship were examined for six generations (1975–79 and 1981) of a univoltine population of the pierid butterfly Colias alexandra. Unlike some other of the so-called red-egged pierids, there is no evidence of egg-recognition in this Coliadine species. Two distribution patterns were observed: contagious or clumped in 1976–1979, but random in 1981. Generation to generation, survivorship to diapause of clumped individuals relative to all individuals shows no consistent pattern. Among clumped individuals, survivorship is two times greater for the first or previously-laid individual than the second or subsequently-laid individual, suggesting that if there is a genetic basis for the common contagious pattern, selection is acting against it. The importance of obtaining data which reveals inter-year variation in assessing or interpreting egg distribution is discussed.  相似文献   

14.
In community ecology, contrasting theories suggest that the distribution and abundance of species, and thus the composition of assemblages, are influenced by i) environmental gradients, or ii) contagious biotic processes such as predation, competition, dispersal and disease. In the former case, sites with similar environments would tend to support similar assemblages, while in the latter, geographically proximate sites would tend to support more similar assemblages than widely separated sites. I investigated the relative influence of environmental variables and spatial position on the composition of frog assemblages at forest streams in sub-tropical eastern Australia using redundancy analysis (RDA) and partial RDA. Data on the maximum abundance of the frog species at 65 survey sites were transformed such that RDA would yield the Hellinger distance between sites. The following analysis identified 11 environmental variables that explained 45% of the variation in the abundance of species at the survey sites (the species matrix), as a proportion of total variance. The geographic co-ordinates of the survey sites accounted for 12%, while the environmental and spatial variables combined accounted for 47% of the variation in the species matrix. Partial redundancy analysis indicated that of the explained variation, 74% was purely environmental, 5% was purely spatial and 21% was spatial environmental variation. This study is the first to quantify the relative influence of environmental and spatial variables on the composition of amphibian assemblages. It provides support for both the environmental control model and the biotic control model of species' distributions and assemblage composition, although environmental variables appear to have the greater effect at this scale of analysis.  相似文献   

15.
Aim Phylogenetically related species share attributes that lead to common responses to environmental conditions, but which could also produce the exclusion of species by its relatives. These processes could generate the patterns of phylogenetic attraction or repulsion in local communities, where related species would tend to coexist more or less than expected by chance. This paper aims to (1) analyse the phylogenetic structure of a benthic gastropod assemblage in the south‐western Atlantic Ocean (SAO); (2) explore the linkages between phylogenetic structure and spatial distribution patterns; (3) compare outcomes driven by the analysis of presence‐only data and predictive species distribution models; and (4) explore which aspects of the gained knowledge can be useful to the design of sound conservation and/or management actions. Location Uruguayan shelf and slope in the SAO. Methods Spatial patterns in taxonomical relatedness were assessed using (1) raw presence/absence data (i.e. realized niche approach) and (2) reconstruction of the potential composition of the assemblage from niche modelling (i.e. fundamental niche approach). Null models were used to test hypotheses on assemblage structure. Results Significant departures from the null hypothesis that all species were drawn from the same assemblage were observed irrespectively of the approach, indicating the existence of non‐random structures. However, a high proportion of local communities can be thought as random subsets of the regional species pool. This lack of a strong signal of a taxonomic effect could be related to the absence of a linkage between taxonomic distances and ecological similarities. Main conclusions Our results suggest a random assembly of local communities from the regional species pool and/or niche filtering independent of phylogeny as main determinants of local community composition. We also suggest that local assemblages displaying significantly higher (or lower) than expected taxonomic relatedness should be taken into consideration for designing spatially explicit conservation measures.  相似文献   

16.
It is well known that stream macroinvertebrates usually show aggregated spatial distributions caused by extrinsic factors and interactions among species and individuals. In the present study, the spatial distribution of caddisfly assemblages and coexistence patterns of larval caddisfly species (Insecta: Trichoptera) were measured in a Hungarian stream reach at three different spatial scales. Caddisfly assemblages showed aggregated, random and regular distributions as measured by the variance‐mean relationship of species richness as sampling area increased from 0.0225 m2 to 0.2025 m2. The observed coexistence patterns indicated interactions (lower diversity of unique species combinations than expected by chance) among species for aggregated distributions. These interactions among species proved to be positive associations particularly among species belonging to the same functional feeding group. The positive associations and the aggregated distribution of caddisflies supported the hypothesis that microhabitat patches (patchy microhabitat‐macroinvertebrate model) and/or positive biological interactions among species using the same resource (hypothesis of facilitation) have a deterministic effect on the spatial distribution of caddisfly assemblages. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Spatial structure and the distribution of individuals within a community might be influenced by several factors such as habitat heterogeneity and local interactions among individuals of the same and different species. We investigated the spatial distributions of eight bird species in a grassland community during the breeding season and examined whether the spatial distributions of individuals were influenced by interactions among neighboring individuals or different habitat preferences of different bird species.
In order to identify the effects of the interactions among neighboring individuals and habitat preference, we developed a randomization test in which species identifications were randomly allocated to the observed individual positions within areas with the same vegetation structure. The randomization test indicated that individuals tend to have territories near the territories of individuals of the same species or of a particular species more frequently (or less frequently) than those expected from random distributions of individuals.
Among these associations, only one case was explained by individual interactions, and 19 cases were explained by habitat preference.
The results suggest that both individual interactions and habitat preference affected the spatial distributions of individuals and possibly influence the species compositions and diversity in grassland bird communities.  相似文献   

18.
Confidence in projections of the future distributions of species requires demonstration that recently-observed changes could have been predicted adequately. Here we use a dynamic model framework to demonstrate that recently-observed changes at the expanding northern boundaries of three British butterfly species can be predicted with good accuracy. Previous work established that the distributions of the study species currently lag behind climate change, and so we presumed that climate is not currently a major constraint at the northern range margins of our study species. We predicted 1970–2000 distribution changes using a colonisation model, MIGRATE, superimposed on a high-resolution map of habitat availability. Thirty-year rates and patterns of distribution change could be accurately predicted for each species (κ goodness-of-fit of models >0.64 for all three species, corresponding to >83% of grid cells correctly assigned), using a combination of individual species traits, species-specific habitat associations and distance-dependent dispersal. Sensitivity analyses showed that population productivity was the most important determinant of the rate of distribution expansion (variation in dispersal rate was not studied because the species are thought to be similar in dispersal capacity), and that each species' distribution prior to expansion was critical in determining the spatial pattern of the current distribution. In future, modelling approaches that combine climate suitability and spatially-explicit population models, incorporating demographic variables and habitat availability, are likely to be valuable tools in projecting species' responses to climatic change and hence in anticipating management to facilitate species' dispersal and persistence.  相似文献   

19.
Abstract.  1. Several non-random patterns in the distribution of species have been observed, including Clementsian gradients, Gleasonian gradients, nestedness, chequerboards, and evenly spaced gradients. Few studies have examined these patterns simultaneously, although they have often been studied in isolation and contrasted with random distribution of species across sites.
2. This study examined whether assemblages of chironomid midges exhibit any of the idealised distribution patterns as opposed to random distribution of species across sites within the metacommunity context in a boreal drainage system. Analyses were based on stream surveys conducted during three consecutive years. Analytical approaches included ordinations, cluster analysis, null models, and associated randomisation methods.
3. Midge assemblages did not conform to Clementsian gradients, which was evidenced by the absence of clearly definable assemblage types with numerous species exclusive to each assemblage type. Rather, there were signs of continuous Gleasonian variability of assemblage composition, as well as significant nested subset patterns of species distribution.
4. Midge assemblages showed only weak relationships with any of the measured environmental variables, and even these weak environmental relationships varied among years.
5. Midge assemblages did not appear to be structured by competition. This finding was somewhat problematic, however, because the two indices measuring co-occurrence provided rather different signs of distribution patterns. This was probably a consequence of how they actually measure co-occurrence.
6. Although midge assemblages did not show a perfect match with any of the idealised distribution patterns, they nevertheless showed a resemblance to the empirical patterns found previously for several plant and animal groups.  相似文献   

20.
Patterns of co-occurrence of species are widely used to assess the fit of ecological neutral models to empirical patterns. The mathematically equivalent patterns of co-diversity of sites, in contrast, have been considered only indirectly and analyses normally are focused on the spatial distribution of species richness, rather than on the patterns of species sharing. Here we use two analytical tools (range-diversity plots and rank plots) to assess the predictions of simple neutral models in relation to patterns of co-occurrence and co-diversity. Whereas a fully stochastic null model predicts zero average among species and among sites, neutral models generate systems with low levels of covariance among species and high levels of positive covariance among sites. These patterns vary with different combinations of dispersal and speciation rates, but are always linked to the shape, symmetry, and spread of the range-size and species-richness frequency distributions. Non-homogeneous patterns of diversity and distribution arise in neutral models because of the spatial arrangement of sites and their concomitant similarity, which is reflected also in the spread of the range-size frequency distribution. The nearly null covariance among species, in contrast, implies low variance in species richness of sites and very slim frequency distributions. In real world assemblages of Mexican volant and non-volant mammals, patterns of range-size and species-richness frequency distribution are similar to those generated by neutral models. However, when the comparison includes the covariance both for species (co-occurrence) and for sites (co-diversity), empirical patterns differ significantly from the predictions of neutral models. Because of the mathematical links between the covariance in the distribution of species and the variance of species-richness values and between the covariance in species sharing among sites and the variance of range-size values, a full understanding of patterns of diversity calls for the simultaneous analysis of co-occurrence and co-diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号