首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we have shown that the biosynthesis of androstenol, a potential endogenous ligand for the orphan receptors constitutive androstane receptor and pregnane-X-receptor, requires the presence of enzymes of the steroidogenic pathway, such as 3 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase. In this report, we examine at the molecular level whether the enzyme 17 alpha-hydroxylase/17,20-lyase (P450c17), which possesses dual 17 alpha-hydroxylase and 17,20-lyase activities and catalyzes the production of precursors for glucocorticoids and sex steroids, is also able to catalyze the formation of a third class of active steroids, 16-ene steroids (including androstenol). The role of components of the P450 complex is also assessed. We transfected human embryonic kidney (HEK-293) cells with various amounts of vectors expressing P450c17, NADPH-cytochrome P450 reductase, and cytochrome b5. Our results showed that P450c17 possesses a 16-ene-synthase activity able to transform pregnenolone into 5,16-androstadien-3 beta-ol, without the formation of the precursor 17-hydroxypregnenolone. Cytochrome b5 has a much stronger effect on the 16-ene-synthase activity than on the 17 alpha-hydroxylase/17,20-lyase activities. On the other hand, P450reductase has a drastic effect on the latter, but a negligible one on 5,16-androstadien-3 beta-ol synthesis. Our results therefore demonstrate that human P450c17, as other enzymes of the classical steroidogenic pathway, is involved in the biosynthetic pathway leading to the formation of androstenol.  相似文献   

2.
Neurosteroids in rodents can originate from peripheral tissues or be locally synthesized in specific brain areas. There is, as yet, no information about the synthesis and regulation of neurosteroids in human brain. We examined the ability of human brain cells to synthesize steroids from a radiolabeled precursor and the mRNA and protein expression of key components of peripheral steroidogenic machinery. Oligodendrocytes are the source of pregnenolone in human brain. Human astrocytes do not synthesize radiolabeled pregnenolone, nor do human neurons. There is potential for all three cell types to metabolize pregnenolone to other neurosteroids, including dehydroepiandrosterone. mRNA and protein for cytochrome P450 17alpha-hydroxylase were found in all cell types, although no activity could be demonstrated. We examined the ability of the cells to make dehydroepiandrosterone via an alternative pathway induced by treatment with Fe2+. Oligodendrocytes and astrocytes make dehydroepiandrosterone via this pathway, but neurons do not. In searching for a natural regulator of dehydroepiandrosterone formation, we observed that treating oligodendrocytes with beta-amyloid, which increases reactive oxygen species, also increased dehydroepiandrosterone formation. These effects of beta-amyloid were blocked by vitamin E. These results indicate that human brain makes steroids in a cell-specific manner and suggest that dehydroepiandrosterone synthesis can be regulated by intracellular free radicals.  相似文献   

3.
The functional consequences of luteinizing hormone/human chorionic gonadotropin signaling via neuronal luteinizing hormone/human chorionic gonadotropin receptors expressed throughout the brain remain unclear. A primary function of luteinizing hormone (LH) in the gonads is the stimulation of sex steroid production. As LH can cross the blood-brain barrier, present in cerebrospinal fluid and is expressed by neuronal cells, we tested whether LH might also modulate steroid synthesis in the brain. Treatment of differentiated rat primary hippocampal neurons and human M17 neuroblastoma cells with LH (100 mIU/mL) resulted in a twofold increase in pregnenolone secretion in both cell types, suggesting an increase in P450scc-mediated cleavage of cholesterol to pregnenolone and its secretion from neurons. To explore how LH might regulate the synthesis of pregnenolone, the precursor for steroid synthesis, we treated rat primary hippocampal neurons with LH (0, 10 and 100 mIU/mL) and measured changes in the expression of LH receptor and steroidogenic acute regulatory protein (StAR). LH induced a rapid (within 30 min) increase in the expression of StAR, but induced a dose-dependent decrease in LH receptor expression. Consistent with these results, the suppression of serum LH in young rats treated with leuprolide acetate for 4 months down-regulated StAR expression, but increased LH receptor expression in the brain. Taken together, these results indicate that LH induces neuronal pregnenolone production by modulating the expression of the LH receptor, increasing mitochondrial cholesterol transport and increasing P450scc-mediated cleavage of cholesterol for pregnenolone synthesis and secretion.  相似文献   

4.
The first section of this publication summarizes early work according to which 5 beta-pregnanedione is an important metabolite of progesterone in the early stages of the chick embryo's adrenal steroidogenesis, then decreasing gradually as corticosteroidogenesis increases. In the second section a model is described in which adrenal 3 beta-ol hydroxylase-isomerase of the 17-day-old chicken is suppressed pharmacologically, this suppression being correlated with that of the synthesis of aminoevulinic acid (ALA), the first and rate-limiting step of the heme pathway. 5 beta-Pregnanedione (10(-7)-10(-6) M) restored ALA synthesis in this inhibited model to normal values. The effect of 5 beta-pregnanedione was specific since other steroids tested: progesterone; 5 alpha-pregnanedione; corticosterone or estradiol, did not stimulate ALA. Since heme formation by steroidogenic glands contributes to the synthesis of cytochrome P450 rather than hemoglobin, 5 beta-pregnanedione was also assayed as a stimulator of this enzyme system and was found to increase cytochrome P450 in adrenals and testes but not in the liver. In view of these results a hypothesis is advanced according to which 5 beta-reduced progestagens and androgens stimulate cytochrome P450 formation, i.e. the synthesis of progesterone and higher hydroxylated steroids, by steroidogenic glands in the event of an excessive precursor reduction.  相似文献   

5.
Pathways of dehydroepiandrosterone formation in rat brain glia   总被引:4,自引:0,他引:4  
In peripheral steroidogenic tissues, dehydroepiandrosterone (D) is formed from pregnenolone (P) by the microsomal cytochrome P450c17 enzyme. Although some steroidogenic P450s have been found in brain tissue, no enzyme has been shown to possess P450c17 activity. We recently demonstrated the presence of an alternative, Fe(2+)-dependent pathway responsible for D formation from alternative precursors in rat glioma cells. We and others could not find P450c17 mRNA and protein in rat brain, but demonstrate herein the presence of Fe(2+)-dependent alternative pathway for D formation in rat brain cortex microsomes. Using primary cultures of differentiating rat glial cells, we observed that P450c17 mRNA and protein were present in O-2A oligodendrocyte precursors and mature oligodendrocytes. In the presence of P, O-2A and mature oligodendrocytes formed D. Addition of Fe(2+) together with submaximal concentrations of P increased D formation by these cells. Treatment of oligodendrocytes with the P450c17 inhibitor SU 10603 in the presence or absence of P failed to inhibit D production. These data suggest that D formation in oligodendrocytes occurs independently of the P450c17 protein present in the cells. In isolated type I astrocytes we did not find neither P450c17 mRNA nor protein. These cells responded to Fe(2+) by producing D and addition of P together with Fe(2+) further increased D synthesis. SU 10603 failed to inhibit D formation by astrocytes. Taken together these results suggest that in differentiating rat brain oligodendrocytes and astrocytes D is formed via a P450c17-independent and oxidative stress-dependent alternative pathway.  相似文献   

6.
Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.  相似文献   

7.
Abstract: In examining steroid synthesis in the CNS, expression of the mRNAs encoding for cytochrome P450 side-chain cleavage enzyme (P450SCC) and 3β-hydroxysteroid dehydrogenase/Δ54 isomerase (3β-HSD) has been studied in the rat brain. P450SCC transforms cholesterol into pregnenolone and 3β-HSD transforms pregnenolone into progesterone. PCR was used to amplify cDNA sequences from total RNA extracts. Classical steroidogenic tissues, like adrenal and testis, as well as the non-steroidogenic tissue lung have been used as controls. The expression of P450SCC and 3β-HSD have been demonstrated by PCR in cortex, cerebellum, and spinal cord. In addition, primary cultures of rat cerebellar glial cells and rat cerebellar granule cells were found to express P450SCC and 3β-HSD at comparable levels. Furthermore, three of the four known isoenzymes of 3β-HSD were identified, as determined using selective PCR primers coupled with discriminative restriction enzymes and sequencing analysis of the amplified brain products. Using RNA probes, in situ hybridization indicated that P450SCC and 3β-HSD are expressed throughout the brain at a low level and mainly in white matter. Enrichment of glial cell cultures in oligodendrocytes, however, does not increase the relative abundance of P450SCC and 3β-HSD mRNA detected by PCR. This discrepancy suggests that the developmental state of cultured cells and their intercellular environment may be critical for regulating the expression of these enzymes. These findings support the proposal that the brain apparently has the capacity to synthesize progesterone from cholesterol, through pregnenolone, but that the expression of these enzymes appears to be quite low. Furthermore, the identification of these messages in cerebellar granule cell cultures implies that certain neurons, in addition to glial cells, may express these steroidogenic enzymes.  相似文献   

8.
Regulation of oocyte maturation in fish   总被引:2,自引:0,他引:2  
  相似文献   

9.
We administered a series of steroid hormones to primary nonproliferating cultures of adult rat hepatocytes and found that dexamethasone and other glucocorticoids but not sex steroid hormones, mineralocorticoids, or derivatives of pregnenolone other than pregnenolone 16 alpha-carbonitrile (PCN) stimulated de novo synthesis of an immunoreactive protein, indistinguishable from the form of cytochrome P-450 (P450PCN) induced by PCN in rat liver. No difference were discerned among purified liver cytochromes from rats treated with dexamethasone, PCN or dexamethasone plus PCN, among proteolytic digests of these proteins, or among the immunoprecipitated cytochromes prepared from cultured hepatocytes treated with these steroids as judged by electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate followed by immunoblot analysis. Of the steroids tested, dexamethasone proved to be the most efficacious inducer increasing the rate of synthesis of P450PCN from 0.05% of total cellular protein synthesis in incubated control cultures (measured as incorporation of [3H]leucine into immunoprecipitable P450PCN) to as much as 9.4% in cultures incubated for 5 days in medium containing dexamethasone (10(-5) M). As with traditional glucocorticoid-responsive liver functions, induction of immunoreactive P450PCN was dependent on the concentration of dexamethasone (10(-8) to 10(-5) M) and was promptly reversed upon withdrawal of the steroid. However, during the 24-h interval between 24 to 48 h of culture age the hepatocytes were refractory to either induction or de-induction of immunoreactive P450PCN even though continuous exposure of the cells to dexamethasone (including this interval) was mandatory for maximal induction of P450PCN at 120 h in culture. Unlike cultured rat hepatocytes, HTC hepatoma cultures failed to exhibit dexamethasone-responsive expression of immunoreactive P450PCN. We conclude that glucocorticoids and PCN constitute a specific "class" of synthetic and endogenous inducers of a single form of cytochrome P-450.  相似文献   

10.
11.
Following up on our previous findings that the skin possesses steroidogenic activity from progesterone, we now show widespread cutaneous expression of the full cytochrome P450 side-chain cleavage (P450scc) system required for the intracellular catalytic production of pregnenolone, i.e. the genes and proteins for P450scc enzyme, adrenodoxin, adrenodoxin reductase and MLN64. Functionality of the system was confirmed in mitochondria from skin cells. Moreover, purified mammalian P450scc enzyme and, most importantly, mitochondria isolated from placenta and adrenals produced robust transformation of 7-dehydrocholesterol (7-DHC; precursor to cholesterol and vitamin D3) to 7-dehydropregnenolone (7-DHP). Product identity was confirmed by comparison with the chemically synthesized standard and chromatographic, MS and NMR analyses. Reaction kinetics for the conversion of 7-DHC into 7-DHP were similar to those for cholesterol conversion into pregnenolone. Thus, 7-DHC can form 7-DHP through P450scc side-chain cleavage, which may serve as a substrate for further conversions into hydroxy derivatives through existing steroidogenic enzymes. In the skin, 5,7-steroidal dienes (7-DHP and its hydroxy derivatives), whether synthesized locally or delivered by the circulation, may undergo UVB-induced intramolecular rearrangements to vitamin D3-like derivatives. This novel pathway has the potential to generate a variety of molecules depending on local steroidogenic activity and access to UVB.  相似文献   

12.
Steroid synthesis in rat brain cell cultures   总被引:1,自引:0,他引:1  
Primary cultures derived from neonatal rat forebrains were established and cultured for several weeks. They grow entirely as glial cultures composed of oligodendrocytes and astrocytes. Glial cells undergo maturation and differentiation in culture. This was shown by measuring the oligodendroglial enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a specific marker for expression of oligodendrocyte differentiation. CNPase activity increased from days 10-21 of culture. Both cell types were characterized by indirect immunofluorescence staining using monoclonal antibodies to galactocerebroside (Gal C) and myelin basic protein (MBP) for oligodendrocytes, and glial fibrillary acidic protein (GFAP) for astrocytes. Using the above criteria, we measured about 60% oligodendrocytes and 40% astrocytes after 3 weeks of culture. Oligodendrocytes, expressing Gal C and MBP, were highly immunoreactive to monospecific polyclonal antibodies to the cytochrome P-450scc, enzyme involved in the synthesis of pregnenolone from cholesterol. After incubation of glial cultures with [3H]mevalonolactone in the presence of mevinoline and trilostane, biosynthesis of [3H]cholesterol, [3H]pregnenolone (P) and [3H]pregn-5-ene-3 beta, 20 alpha-diol (20-OHP) was demonstrated. Steroid biosynthesis was related to oligodendroglial differentiation, as the initial and rapid rate of increase in CNPase activity was found to occur at the same time as the onset of steroid synthesis. Both reached a maximum at 3 weeks of culture and remained stable for several weeks. Steroid synthesis was increased by dibutyryl cAMP (0.2 mM), as well as by dexamethasone (10 nM). When aminoglutethimide, a potent inhibitor of cytochrome P-450scc, was added during the incubation of cells with [3H]mevalonolactone, [3H]cholesterol accumulated in the cells. After the release of aminoglutethimide blockade, [3H]20-OHP was the major steroid produced and released in the culture medium. The demonstration of de novo steroid biosynthesis and of the cholesterol side-chain cleavage cytochrome P-450 in normal rat glial cells brings additional support to the concept of "neurosteroids".  相似文献   

13.
The human steroidogenic cytochromes P450 CYP17A1 (P450c17, 17α-hydroxylase/17,20-lyase) and CYP21A2 (P450c21, 21-hydroxylase) are required for the biosynthesis of androgens, glucocorticoids, and mineralocorticoids. Both enzymes hydroxylate progesterone at adjacent, distal carbon atoms and show limited tolerance for substrate modification. Halogenated substrate analogs have been employed for many years to probe cytochrome P450 catalysis and to block sites of reactivity, particularly for potential drugs. Consequently, we developed efficient synthetic approaches to introducing one or more halogen atom to the 17- and 21-positions of progesterone and pregnenolone. In particular, novel 21,21,21-tribromoprogesterone and 21,21,21-trichloroprogesterone were synthesized using the nucleophilic addition of either bromoform or chloroform anion onto an aldehyde precursor as the key step to introduce the trihalomethyl moieties. When incubated with microsomes from yeast expressing human CYP21A2 or CYP17A1 with P450-oxidoreductase, CYP21A2 metabolized 17-fluoroprogesterone to a single product, whereas incubations with CYP17A1 gave no products. Halogenated steroids provide a robust system for exploring the substrate tolerance and catalytic plasticity of human steroid hydroxylases.  相似文献   

14.
15.
In the companion report we used primary cultures of adult rat hepatocytes to demonstrate that glucocorticoids comprise a "class" of compounds that stimulate de novo synthesis of a form of cytochrome P-450 (P450PCN) indistinguishable from that induced by the nonhormonal steroid pregnenolone 16 alpha-carbonitrile (PCN). Because induction of P450PCN is stereospecific for glucocorticoids and is dependent on the concentration of and the length of exposure to steroids it seemed possible that P450PCN represented another of the many genes whose expression is coordinately regulated by glucocorticoids bound to their specific cytoplasmic receptor and translocated into the nucleus. However, in cultured hepatocytes treated with glucocorticoids, synthesis of P450PCN failed to parallel synthesis of a typical glucocorticoid-responsive liver function, tyrosine aminotransferase, in the time course of induction, in the concentrations of glucocorticoids required for half-maximal induction, and in the order of effective steroids ranked by potency. Indeed, two moderately potent inducers of P450PCN either failed to induce tyrosine aminotransferase (spironolactone) or actually antagonized induction of tyrosine aminotransferase synthesis by glucocorticoids (PCN). Moreover, in the same cultures in which glucocorticoid induction of tyrosine aminotransferase was blocked by the presence of PCN or other previously identified antiglucocorticoids, synthesis of P450PCN was actually enhanced. We conclude that synthesis of P450PCN is a specific glucocorticoid-responsive liver function evoked by a novel mechanism readily distinguishable from the classic glucocorticoid receptor pathway.  相似文献   

16.
17.
In Bufo arenarum, androgen biosynthesis occurs through a complete 5-ene pathway, including 5-androstane-3β,17β-diol as the immediate precursor of testosterone. Besides, steroidogenesis changes during the breeding period, turning from androgens to C21-steroids such as 5-pregnan-3,20-diol, 3-hydroxy-5-pregnan-20-one and 5-pregnan-3,20-dione. In B. arenarum, steroid hormones are not involved in hCG-induced spermiation, suggesting that the steroidogenic shift to C21-steroids during the breeding be not related to spermiation. The activity of 17-hydroxylase-C17–20 lyase (CypP450c17) decreases during the reproductive season, suggesting that this enzyme would represent a key enzyme in the regulation of seasonal changes. However, the increase in the affinity for pregnenolone of 3β-hydroxysteroid dehydrogenase (3HSD)/isomerase could also be involved. Moreover, the reduction in CypP450c17 leading to a reduction in C19-steroids, among them dehydroepiandrosterone (DHE), would contribute to the conversion of pregnenolone into progesterone, avoiding the non-competitive inhibition exerted by DHE on this transformation. Additionally, CypP450c17 possesses a higher affinity for pregnenolone than for progesterone, explaining the predominance of the 5-ene pathway for testosterone biosynthesis. Animals in reproductive condition showed a significant reduction in circulating androgens, enhancing the physiological relevance of all the in vitro results. The in vitro effects of mGnRH and hrFSH on testicular steroidogenesis revealed that both hormones inhibited CypP450c17 activity. In summary, these results demonstrate that, in B. arenarum, the change in testicular steroidogenesis during the reproductive period could be partially due to an FSH and GnRH-induced decrease in CypP450c17 activity.  相似文献   

18.
Abstract: Neurons and glial cells are capable of synthesizing various steroid hormones, but biosynthesis of testosterone in the CNS has never been reported. The aim of the present study was to demonstrate the synthesis of testosterone in the frog brain. The presence of 17β-hydroxysteroid dehydrogenase (17β-HSD)-like immunoreactivity was detected in a population of glial cells located in the telencephalon. Reversed-phase HPLC analysis of brain tissue extracts combined with radioimmunoassay detection revealed the presence of substantial amounts of testosterone and 5α-dihydrotestosterone (5α-DHT) in the telencephalon where 17β-HSD-positive cells were visualized. In male frogs, castration totally suppressed testosterone and 5α-DHT in the blood and in the rhombencephalon but did not affect the concentration of these two steroids in the telencephalon. Chemical characterization of testosterone in female frog telencephalon extracts was performed by coupling HPLC analysis with gas chromatography-mass spectrometry. Using the pulse-chase technique with [3H]pregnenolone as a precursor, the formation of a series of metabolites was observed, including dehydroepiandrosterone, androstenedione, testosterone, 5α-DHT, and estradiol. These data demonstrate the existence of an active form of 17β-HSD in the frog telencephalon, which is likely involved in testosterone biosynthesis within the brain.  相似文献   

19.
Propylthiouracil (PTU) is a thioamide drug used clinically to inhibit thyroid hormone production. However, PTU is associated with some side effects in different organs. In the present study, the acute and direct effects of PTU on testosterone production in rat Leydig cells were investigated. Leydig cells were isolated from rat testes, and an investigation was performed on the effects of PTU on basal and evoked-testosterone release, the functions of steroidogenic enzymes, including protein expression of cytochrome P450 side-chain cleavage enzyme (P450(scc)) and mRNA expression of the steroidogenic acute regulatory protein (StAR). Rat Leydig cells were challenged with hCG, forskolin, and 8-bromo-cAMP to stimulate testosterone release. PTU inhibited both basal and evoked-testosterone release. To study the effects of PTU on steroidogenesis, steroidogenic precursor-stimulated testosterone release was examined. PTU inhibited pregnenolone production (i.e., it diminished the function of P450(scc) in Leydig cells). In addition to inhibiting hormone secretion, PTU also regulated steroidogenesis by diminishing mRNA expression of StAR. These results suggest that PTU acts directly on rat Leydig cells to diminish testosterone production by inhibiting P450(scc) function and StAR expression.  相似文献   

20.
Dehydroepiandrosterone (DHEA), a 19-carbon precursor of sex steroids, is abundantly produced in the human but not the mouse adrenal. However, mice produce DHEA and DHEA-sulfate (DHEAS) in the fetal brain. DHEA stimulates axonal growth from specific populations of mouse neocortical neurons in vitro, while DHEAS stimulates dendritic growth from those cells. The synthesis of DHEA and sex steroids, but not mouse glucocorticoids and mineralocorticoids, requires P450c17, which catalyzes both 17 alpha-hydroxylase and 17,20-lyase activities. We hypothesized that P450c17-knockout mice would have disordered sex steroid synthesis and disordered brain DHEA production and thus provide phenotypic clues about the functions of DHEA in mouse brain development. We deleted the mouse P450c17 gene in 127/SvJ mice and obtained several lines of mice from two lines of targeted embryonic stem cells. Heterozygotes were phenotypically and reproductively normal, but in all mouse lines, P450c17(-/-) zygotes died by embryonic day 7, prior to gastrulation. The cause of this early lethality is unknown, as there is no known function of fetal steroids at embryonic day 7. Immunocytochemistry identified P450c17 in embryonic endoderm in E7 wild-type and heterozygous embryos, but its function in these cells is unknown. Enzyme assays of wild-type embryos showed a rapid rise in 17-hydroxylase activity between E6 and E7 and the presence of C(17,20)-lyase activity at E7. Treatment of pregnant females with subcutaneous pellets releasing DHEA or 17-OH pregnenolone at a constant rate failed to rescue P450c17(-/-) fetuses. Treatment of normal pregnant females with pellets releasing pregnenolone or progesterone did not cause fetal demise. These data suggest that steroid products of P450c17 have heretofore-unknown essential functions in early embryonic mouse development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号