首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported the absence of significant linkage of phonological coding dyslexia (PCD) to chromosome 6p23-p21.3 in 79 families with at least two affected siblings, even though linkage of dyslexia to this region has been found in four other independent studies. Whereas, in our previous analyses, we used a qualitative (affected, unaffected, or uncertain) PCD phenotype, here we report a reanalysis of linkage to the chromosome 6p region, by use of four quantitative measures of reading disability: phonological awareness, phonological coding, spelling, and rapid-automatized-naming (RAN) speed. The phonological-coding and spelling measures were highly correlated with each other and with the qualitative PCD phenotype, whereas the phonological-awareness and RAN-speed measures were only moderately correlated with the other measures. Using two-point and multipoint quantitative-trait sib-pair linkage analyses and variance-components analyses, we were unable to detect significant evidence for a locus in the 6p23-p21.3 region influencing any of the quantitative reading measures, supporting our previous qualitative linkage results. The most likely explanation for our inability to detect linkage between dyslexia and this region is that families with subtypes of dyslexia linked to this region are underrepresented in our sample, because of either chance or varying ascertainment criteria.  相似文献   

2.
Speech-sound disorder (SSD) is a complex behavioral disorder characterized by speech-sound production errors associated with deficits in articulation, phonological processes, and cognitive linguistic processes. SSD is prevalent in childhood and is comorbid with disorders of language, spelling, and reading disability, or dyslexia. Previous research suggests that developmental problems in domains associated with speech and language acquisition place a child at risk for dyslexia. Recent genetic studies have identified several candidate regions for dyslexia, including one on chromosome 3 segregating in a large Finnish pedigree. To explore common genetic influences on SSD and reading, we examined linkage for several quantitative traits to markers in the pericentrometric region of chromosome 3 in 77 families ascertained through a child with SSD. The quantitative scores measured several processes underlying speech-sound production, including phonological memory, phonological representation, articulation, receptive and expressive vocabulary, and reading decoding and comprehension skills. Model-free linkage analysis was followed by identification of sib pairs with linkage and construction of core shared haplotypes. In our multipoint analyses, measures of phonological memory demonstrated the strongest linkage (marker D3S2465, P=5.6 x 10(-5), and marker D3S3716, P=6.8 x 10(-4)). Tests for single-word decoding also demonstrated linkage (real word reading: marker D3S2465, P=.004; nonsense word reading: marker D3S1595, P=.005). The minimum shared haplotype in sib pairs with similar trait values spans 4.9 cM and is bounded by markers D3S3049 and D3S3045. Our results suggest that domains common to SSD and dyslexia are pleiotropically influenced by a putative quantitative trait locus on chromosome 3.  相似文献   

3.
Reading disability (RD), or dyslexia, is a complex cognitive disorder manifested by difficulties in learning to read, in otherwise normal individuals. Individuals with RD manifest deficits in several reading and language skills. Previous research has suggested the existence of a quantitative-trait locus (QTL) for RD on the short arm of chromosome 6. In the present study, RD subjects' performance in several measures of word recognition and component skills of orthographic coding, phonological decoding, and phoneme awareness were individually subjected to QTL analysis, with a new sample of 126 sib pairs, by means of a multipoint mapping method and eight informative DNA markers on chromosome 6 (D6S461, D6S276, D6S105, D6S306, D6S258, D6S439, D6S291, and D6S1019). The results indicate significant linkage across a distance of at least 5 cM for deficits in orthographic (LOD = 3.10) and phonological (LOD = 2.42) skills, confirming previous findings.  相似文献   

4.
J Ahn  T W Won  A Zia  H Reutter  D E Kaplan  R Sparks  J R Gruen 《Genomics》2001,78(1-2):19-29
A gene for reading disability has been localized by nonparametric linkage to 6p21.3-p22 in several published reports. However, the lack of an uninterrupted genomic clone contig has made it difficult to determine accurate intermarker distances, precise marker order, and genetic boundaries and hinders direct comparisons of linkage. The search and discovery of the hemochromatosis gene (HFE) led to the creation of a bacterial artificial chromosome (BAC) and P-1 derived artificial chromosome (PAC) contig that extended physical maps 4 Mb from the MHC toward pter and localized new markers in that region [10-12]. Using this contig, we localized 124 sequence tagged sites, expressed sequence tags, and short tandem repeats including most of the markers in linkage with reading disability phenotypes, succinic semialdehyde dehydrogenase, GPLD1, prolactin, and 18 uncharacterized genes. This new contig joins and extends previously published physical maps to span the entire chromosome 6 reading disability genetic locus. Physical mapping data from the complete contig show overlap of the published linkage peaks for reading disability, provide accurate intermarker distances and order, and offer resources for generating additional markers and candidate genes for high resolution genetic studies in this region.  相似文献   

5.

Background

Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis.

Methodology/Principal Findings

Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L).

Conclusions

Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.  相似文献   

6.
Six extended dyslexic families with at least four affected individuals were genotyped with markers in three chromosomal regions: 6p23-p21.3, 15pter-qter, and 16pter-qter. Five theoretically derived phenotypes were used in the linkage analyses: (1) phonological awareness; (2) phonological decoding; (3) rapid automatized naming; (4) single-word reading; and (5) discrepancy between intelligence and reading performance, an empirically derived, commonly used phenotype. Two-point and multipoint allele-sharing analyses of chromosome 6 markers revealed significant evidence (P < 10(-6)) for linkage of the phonological awareness phenotype to five adjacent markers (D6S109, D6S461, D6S299, D6S464, and D6S306). The least compelling results were obtained with single-word reading. In contrast, with chromosome 15 markers, a LOD score of 3.15 was obtained for marker D15S143 at theta = 0.0 with single-word reading. Multipoint analyses with markers adjacent to D15S143 (D15S126, D15S132, D15S214, and D15S128) were positive, but none reached acceptable significance levels. Chromosome 15 analyses with the phonological awareness phenotype were negative. Parametric and nonparametric linkage analyses with chromosome 16 markers were negative. The most intriguing aspect of the current findings is that two very distinct reading-related phenotypes, reflecting different levels in the hierarchy of reading-related skills, each contributing to different processes, appear to be linked to two different chromosomal regions.  相似文献   

7.
Reading disability (RD), or dyslexia, is a common heterogeneous syndrome with a large genetic component. Several studies have consistently found evidence for a quantitative-trait locus (QTL) within the 17 Mb (14.9 cM) that span D6S109 and D6S291 on chromosome 6p21.3-22. To characterize further linkage to the QTL, to define more accurately the location and the effect size, and to identify a peak of association, we performed Haseman-Elston and DeFries-Fulker linkage analyses, as well as transmission/disequilibrium, total-association, and variance-components analyses, on 11 quantitative reading and language phenotypes. One hundred four families with RD were genotyped with a new panel of 29 markers that spans 9 Mb of this region. Linkage results varied widely in degree of statistical significance for the different linkage tests, but multipoint analysis suggested a peak near D6S461. The average 6p QTL heritability for the 11 reading and language phenotypes was 0.27, with a maximum of 0.66 for orthographic choice. Consistent with the region of linkage described by these studies and others, there was a peak of transmission disequilibrium with a QTL centered at JA04 (chi2=9.48; empirical P=.0033; orthographic choice), and there was strong evidence for total association at this same marker (chi2=11.49; P=.0007; orthographic choice). Although the boundaries of the peak could not be precisely defined, the most likely location of the QTL is within a 4-Mb region surrounding JA04.  相似文献   

8.
Reading disability (RD), or dyslexia, is the most common learning disability with a prevalence rate of ~5%–10% in school-age children. RD is highly heritable with evidence of a neurobiological origin. Linkage studies have identified several quantitative trait loci (QTLs) for RD. The QTL on chromosome 6p21.3 has been independently replicated by several groups and spans a 16.4-Mb (13.8 cM) interval from D6S109 to D6S291. In this study, we performed sib-pair linkage analyses with Haseman–Elston and DeFries–Fulker methods to define more accurately the QTL interval. Linkage was assessed by using five quantitative phenotypes, including a composite measure of reading performance and four component phenotypes. When probands were selected for severe scores, single- and multi-point analyses showed significant linkage with all five phenotypes, converging over an interval of ~3.24 Mb spanning D6S1597 to D6S1571. Maximal linkage converged at marker D6S1554 across phenotypes. Out of 12 genes in the linkage interval, ten clustered within ~680 kb and were selected for association analysis based on central nervous system expression and putative function. Marker-trait associations were assessed by using QTDT (a general test of association for quantitative traits) and the family-based association test (FBAT), and haplotype analysis was performed by using FBAT and the GeneHunter Transmission/Disequilibrium Test TDT. Marker associations were detected in five of the ten genes, results that were corroborated by our haplotype TDT analysis. The results of the association study have thereby allowed us to significantly reduce the number of possible candidate genes and to prioritize genes for further mutation screening.  相似文献   

9.
Linkage between developmental dyslexia (DD) and chromosome 6p has been replicated in a number of independent samples. Recent attempts to identify the gene responsible for the linkage have produced inconsistent evidence for association of DD with a number of genes in a 575-kb region of chromosome 6p22.2, including VMP, DCDC2, KIAA0319, TTRAP, and THEM2. We aimed to identify the specific gene or genes involved by performing a systematic, high-density (approximately 2-3-kb intervals) linkage disequilibrium screen of these genes in an independent sample, incorporating family-based and case-control designs in which dyslexia was defined as an extreme representation of reading disability. Using DNA pooling, we first observed evidence for association with 17 single-nucleotide polymorphisms (SNPs), 13 of which were located in the KIAA0319 gene (P<.01-.003). After redundant SNPs were excluded, 10 SNPs were individually genotyped in 223 subjects with DD and 273 controls. Those SNPs that were significant at P相似文献   

10.
Facial eczema (FE) is a hepatogenous photosensitization disease of ruminant animals, particularly in sheep which vary widely in their susceptibility to the disease. The liver damage is caused by the mycotoxin, sporidesmin. There is evidence that the toxicity of sporidesmin is due to its ability to generate 'active oxygen' species. We evaluated the catalase gene, which encodes an enzyme with antioxidant functions, as a candidate for determining the susceptibility of sheep to the disease. Two microsatellite markers, OarSHP3 and OarSHP4, which flank the sheep catalase gene, were isolated from a Yeast Artificial Chromosome (YAC) clone. These markers mapped the catalase locus by linkage to ovine chromosome 15. Eleven informative markers spaced throughout chromosome 15, inclusive of the catalase marker OarSHP4, gave no significant linkage with the disease traits when analysed in four outcross resource pedigrees. However, OarSHP3 and OarSHP4 allele frequencies showed significant differences between FE resistant and susceptible selection-lines. Comparison of sequences of catalase cDNAs from sheep of resistant and susceptible lines showed only two silent mutations. A single nucleotide polymorphisms (KP1) in exon 6 of the catalase gene also showed significant differences in allele frequencies between the selection lines. The lack of evidence for linkage in outcross pedigrees, but the significant association in the genetic lines, implies that catalase is involved in determining the susceptibility of sheep to facial eczema, and that the candidate gene's effect is probably recessive or minor.  相似文献   

11.
A candidate gene, EKN1, was recently described in a cohort from Finland for the dyslexia locus on chromosome 15q, DYX1. This report described a (2;15) (q11;21) translocation disrupting EKN1 that cosegregated with dyslexia in a two-generation family. It also characterized a sequence polymorphism in the 5′ untranslated region and a missense mutation that showed significant association in 109 dyslexics compared to 195 controls (p=0.002 and p=0.006, respectively). To confirm these results we interrogated the same polymorphisms in a cohort of 150 nuclear families with dyslexia ascertained through the Colorado Learning Disabilities Research Center. Using QTDT analysis with nine individual quantitative tasks and two composite measures of reading performance, we could not replicate the reported association. We conclude that the polymorphisms identified in the Finland sample are unlikely to be functional DNA changes contributing to dyslexia, and that if variation in EKN1 is causal such changes are more likely to be in regulatory regions that were not sequenced in this study. Alternatively, the published findings of association with markers in EKN1 may reflect linkage disequilibrium with variation in another gene(s) in the region.  相似文献   

12.
Recent application of nonparametric-linkage analysis to reading disability has implicated a putative quantitative-trait locus (QTL) on the short arm of chromosome 6. In the present study, we use QTL methods to evaluate linkage to the 6p25-21.3 region in a sample of 181 sib pairs from 82 nuclear families that were selected on the basis of a dyslexic proband. We have assessed linkage directly for several quantitative measures that should correlate with different components of the phenotype, rather than using a single composite measure or employing categorical definitions of subtypes. Our measures include the traditional IQ/reading discrepancy score, as well as tests of word recognition, irregular-word reading, and nonword reading. Pointwise analysis by means of sib-pair trait differences suggests the presence, in 6p21.3, of a QTL influencing multiple components of dyslexia, in particular the reading of irregular words (P=.0016) and nonwords (P=.0024). A complementary statistical approach involving estimation of variance components supports these findings (irregular words, P=.007; nonwords, P=.0004). Multipoint analyses place the QTL within the D6S422-D6S291 interval, with a peak around markers D6S276 and D6S105 consistently identified by approaches based on trait differences (irregular words, P=.00035; nonwords, P=.0035) and variance components (irregular words, P=.007; nonwords, P=.0038). Our findings indicate that the QTL affects both phonological and orthographic skills and is not specific to phoneme awareness, as has been previously suggested. Further studies will be necessary to obtain a more precise localization of this QTL, which may lead to the isolation of one of the genes involved in developmental dyslexia.  相似文献   

13.
It has been reported that BCL3 on chromosome 19q, or a nearby gene, may play a role in the etiology of non-syndromic cleft lip with or without cleft palate (NSCL/P) in some families. We tested 30 USA and 11 Mexican multiplex NSCL/P families for four markers on chromosome 19q: D19S178, APOC2/AC1, APOC2/007, and BCL3. While likelihood-based linkage analysis failed to show significant evidence of linkage, the transmission disequilibrium test indicated highly significant deviation from independent assortment of allele 3 at the BCL3 marker in both data sets (USA:P = 0.001; Mexican: P = 0.018; both combined: P < 0.001) and for allele 13 of the D19S178 marker in the Mexican data set (P = 0.004). These results support an association, possibly due to linkage disequilibrium, between chromosome 19 markers and a putative NSCL/P locus. Received: 10 May 1996 / Revised: 31 July 1996  相似文献   

14.
Several quantitative trait loci (QTLs) that influence developmental dyslexia (reading disability [RD]) have been mapped to chromosome regions by linkage analysis. The most consistently replicated area of linkage is on chromosome 6p23-21.3. We used association analysis in 223 siblings from the United Kingdom to identify an underlying QTL on 6p22.2. Our association study implicates a 77-kb region spanning the gene TTRAP and the first four exons of the neighboring uncharacterized gene KIAA0319. The region of association is also directly upstream of a third gene, THEM2. We found evidence of these associations in a second sample of siblings from the United Kingdom, as well as in an independent sample of twin-based sibships from Colorado. One main RD risk haplotype that has a frequency of approximately 12% was found in both the U.K. and U.S. samples. The haplotype is not distinguished by any protein-coding polymorphisms, and, therefore, the functional variation may relate to gene expression. The QTL influences a broad range of reading-related cognitive abilities but has no significant impact on general cognitive performance in these samples. In addition, the QTL effect may be largely limited to the severe range of reading disability.  相似文献   

15.
The doublecortin domain-containing 2 (DCDC2) gene, which is located on chromosome 6p22.1, has been widely suggested to be a candidate gene for dyslexia, but its role in typical reading development over time remains to be clarified. In the present study, we explored the role of DCDC2 in contributing to the individual differences in reading development from ages 6 to 11 years by analysing data from 284 unrelated children who were participating in the Chinese Longitudinal Study of Reading Development (CLSRD). The associations of eight single nucleotide polymorphisms (SNPs) in DCDC2 with the latent intercept and slope of children’s reading scores were examined in the first step. There was significant support for an association of rs807724 with the intercept for the reading comprehension measure of reading fluency, and the minor “G” allele was associated with poor reading performance. Next, we further tested the rs807724 SNP in association with the reading ability at each tested time and revealed that, in addition to significant associations with the two main reading measures (reading fluency and Chinese character reading) over multiple testing occasions, this SNP also showed associations with reading-related cognitive skills, including morphological production, orthographic judgment and phonological processing skills (rapid number naming, phoneme deletion, and tone detection). This study provides support for DCDC2 as a risk gene for reading disability and suggests that this gene is also operative for typical reading development in the Han population.  相似文献   

16.
Linkage studies have identified a locus on chromosome 3 as reading disabilities (RD) and speech and sound disorder (SSD) susceptibility region, with both RD and SSD sharing similar phonological processing and phonological memory difficulties. One gene in this region, roundabout homolog 1 (ROBO1), has been indicated as a RD candidate and has shown significant association with measures of phonological memory in a population‐based sample. In this study, we conducted a family‐based association analysis using two independent samples collected in Toronto and Calgary, Canada. Using the two samples, we tested for association between ROBO1 single nucleotide polymorphisms (SNPs) and RD, along with quantitative measures for reading, spelling and phonological memory. One SNP, rs331142, which was selected based on its correlation with ROBO1 expression in brain tissue, was found to be significantly associated with RD in the Toronto sample with over transmission of the minor C allele (P = 0.001), correlated with low expression. This SNP is located ~200 bp from a putative enhancer and results for a marker within the enhancer, rs12495133, showed evidence for association with the same allele in both the Toronto and Calgary samples (P = 0.005 and P = 0.007). These results support previous associations between ROBO1 and RD, as well as correlation with low gene expression, suggesting a possible mechanism of risk conferred by this gene.  相似文献   

17.
Genetic susceptibility to pre-eclampsia and chromosome 7q36   总被引:4,自引:0,他引:4  
Pre-eclampsia is the most common serious medical disorder of human pregnancy. The human endothelial cell nitric oxide synthase (eNOS) gene is a candidate for pre-eclampsia/eclampsia (PE/E) susceptibility. A linkage study was performed on Australian PE/E families using 25 microsatellite markers from chromosome 7, one of which (eNOS-CA) resides within the eNOS gene. No significant linkage was found for the eNOS-CA marker using either parametric or non-parametric analysis. However, D7S 1805 from the eNOS gene region on 7q36, gave a suggestion of linkage using parametric analysis (maximum LOD score =2.143 at theta=0.14) and non-parametric APM analysis (T1/sqrt(p)=3.53; P=0.002). Further, an association study was performed on unrelated PE/E cases and controls from both Chinese and Australian populations to test for a relationship between the eNOS gene and PE/E. No association was found between the eNOS-CA marker and PE/E in either population. However, there was a significant difference in the allelic distribution of eNOS-CA between the two ethnic groups. The linkage results support the possibility that a susceptibility locus for pre-eclampsia resides in the 7q36 region, however, there is no definitive evidence to support the notion that the eNOS gene itself is responsible for susceptibility to pre-eclampsia.  相似文献   

18.
The action of antipsychotic drugs on dopamine receptors suggests that dopaminergic signal transmission may play a role in the development of schizophrenia. We tested eight candidate genes (coding for dopamine receptors, the dopamine transporter, and G-proteins) in 59 families from Germany and Israel, for association. A P value of .00055 (.0044 when corrected for the no. of markers tested) was obtained for the intronic CA-repeat marker G-olfalpha on chromosome 18p. The value decreased to .000088 (.0007) when nine sibs with recurrent unipolar depressive disorder were included. Linkage analysis using SSLP markers densely spaced around G-olfalpha yielded a maximum two-point LOD score of 3.1 for a marker 0.5 cM distal to G-olfalpha. Multipoint analysis under the assumption of heterogeneity supported this linkage-whether the affected pheotype was defined narrowly or broadly-as did nonparametric linkage (NPL). In 12 families with exclusively maternal transmission of the disease, the NPL value also supported linkage to this marker. In order to test for association/linkage disequilibrium in the presence of linkage, the sample was restricted to independent offspring. When this sample was combined with 65 additional simplex families (each of them comprising one schizophrenic offspring and his or her parents), the 124-bp allele of G-olfalpha was transmitted 47 times and was not transmitted 21 times (P=.009). These results suggest the existence, on chromosome 18p, of a potential susceptibility locus for functional psychoses.  相似文献   

19.
Dyslexia is characterized by impaired reading and spelling. The disorder has a prevalence of about 5% in Germany, and a strong hereditary component. Several loci are thought to be involved in the development of dyslexia. Scerri et al. identified eight potential dyslexia‐associated single nucleotide polymorphisms (SNPs) in seven genes on chromosome 18 in an English‐speaking population. Here, we present an association analysis that explores the relevance of these SNPs in a German population comprising 388 dyslexia cases and 364 control cases. In case–control analysis, three nominal SNP associations were replicated. The major alleles of NEDD4L‐rs12606138 and NEDD4L‐rs8094327 were risk associated [odds ratio (OR) = 1.35, 95% confidence interval (CI) = 1.0–1.7, P‐value = 0.017 and OR = 1.39, 95% CI = 1.1–1.7, P‐value = 0.007, respectively], and both SNPs were in strong linkage disequilibrium (r2 = 0.95). For MYO5B‐rs555879, the minor allele was risk associated (OR = 1.31, 95% CI = 1.1–1.6, P‐value = 0.011). The combined analysis of SNP sets using set enrichment analysis revealed a study‐wide significant association for three SNPs with susceptibility for dyslexia. In summary, our results substantiate genetic markers in NEDD4L and MYO5B as risk factors for dyslexia and provide first evidence that the relevance of these markers is not restricted to the English language .  相似文献   

20.
A genetic analysis of age of onset of alcoholism was performed on the Collaborative Study on the Genetics of Alcoholism data released for Genetic Analysis Workshop 14. Our study illustrates an application of the log-normal age of onset model in our software Genetic Epidemiology Models (GEMs). The phenotype ALDX1 of alcoholism was studied. The analysis strategy was to first find the markers of the Affymetrix SNP dataset with significant association with age of onset, and then to perform linkage analysis on them. ALDX1 revealed strong evidence of linkage for marker tsc0041591 on chromosome 2 and suggestive linkage for marker tsc0894042 on chromosome 3. The largest separation in mean ages of onset of ALDX1 was 19.76 and 24.41 between male smokers who are carriers of the risk allele of tsc0041591 and the non-carriers, respectively. Hence, male smokers who are carriers of marker tsc0041591 on chromosome 2 have an average onset of ALDX1 almost 5 years earlier than non-carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号