首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major satellite sequences are analysed in the three tenebrionid beetles Palorus cerylonoides, P. genalis, and P. ficicola, and compared with the ones from P. ratzeburgii and P. subdepressus reported elsewhere. All of them are A+T rich, pericentromerically located, and with lengths of about 150 bp, either in the form of monomers or formed by more complex repeating units. A preliminary phylogenetic analysis of Palorus species using the 3' end of the mitochondrial Cytochrome Oxidase I gene shows that the five Palorus species have been diverging for a considerable amount of evolutionary time, with the pair P. ratzeburgii and P. genalis being the most closely related. Only these two taxa showed some similarity between their respective high-copy-number satellite sequences, while other satellites are mutually unrelated and might have originated independently. However, all the satellites have in common tertiary structure induced by intrinsic DNA curvature, a characteristic which is conserved within the genus. Palorus major satellites were previously detected in the genomes of congeneric species as low-copy-number clusters (Mestrovi? et al., Mol. Biol. Evol. 15: 1062-1068. 1998). Given the divergences between the analysed species, the substitution rate deduced from high- and low-copy-number repeats is unexpectedly low. The presence of sequence-induced DNA curvature in all Palorus satellites and similar satellite DNAs in the species pair P. ratzeburgii and P. genalis suggest (i) that constraints are at the tertiary structure; and (ii) that the satellite DNA evolutionary turnover can be dependent on the history of the taxa under study, resulting in retention of similar satellites in related taxa.  相似文献   

2.
To investigate the role of satellite DNA in eukaryotic genomes, we isolated from an African green monkey (Cercopithecus aethiops) genomic library cloned segments containing the previously described deca-satellite linked to low-copy-number genomic sequences. Three such clones were obtained. The low-copy-number sequences in the three clones do not cross-hybridize suggesting that they derive from different genomic loci. The structure of one of the clones, λAMkA, is described in detail. Subcloned segments containing the low-copy-number sequences from λAMkA anneal to monkey, human and mouse genomic DNA. The subcloned probes were used to select clones containing homologous sequences from a second, independent monkey library as well as from human and mouse genomic libraries. Several of the newly isolated monkey clones hybridized to probes containing the species-specific deca- and -satellites, confirming the genomic association of the low-copy-number sequence in λAMkA with satellite DNA. Moreover, several of the human and mouse clones hybridized to species-specific human and mouse satellite DNAs, respectively. These experiments indicate that the low-copy-number sequence in λMkA and its association with satellite DNA is conserved in primates and rodents.  相似文献   

3.
Very abundant and homogenous satellite DNA has been found in the flour beetle Palorus ratzeburgii, representing 40% of its genome. Sequencing of 14 randomly cloned satellite monomers revealed a conserved monomer length of 142 bp and an average A+T content of 68%. Sequence variation analysis showed that base substitutions, appearing with a frequency of 2.3%, are predominant differences among satellite monomers. The satellite sequence is unique without significant direct repeats and with only two potentially stable inverted repeats. After electrophoresis of satellite monomers on native polyacrylamide gel retarded mobilities characteristic for curved DNA molecules are observed. The curvature profiles and DNA helix axis trajectory are calculated on the basis of three different algorithms. These calculations predict that P ratzeburgii satellite DNA forms a left-handed solenoid superstructure. Comparison of described features with other satellite DNAs reveals some striking similarities with satellite DNA from related species Tenebrio molitor, which belongs to the same family of Tenebrionidae. Both satellites are very abundant and homogenous with the same, highly conserved monomer length, although there is no homology at the nucleotide level. Their monomers, as well as multimers, exhibit very similar retarded electrophoretic mobilities. The calculated curvature profiles predict two bend centers in monomers of each satellite, resulting in a model of left-handed solenoid superstructures of similar appearance.  相似文献   

4.
We have determined the complete nucleotide sequence of the monomer repeating unit of the 1.688 g/cm3 satellite DNA from Drosophila melanogaster. This satellite DNA, which makes up 4% of the Drosophila genome and is located primarily on the sex chromosomes, has a repeat unit 359 base-pairs in length. This complex sequence is unrelated to the other three major satellite DNAs present in this species, each of which contains a very short repeated sequence only 5 to 10 base-pairs long. The repeated sequence is more similar to the complex repeating units found in satellites of mammalian origin in that it contains runs of adenylate and thymidylate residues. We have determined the nature of the sequence variations in this DNA by restriction nuclease cleavage and by direct sequence determination of (1) individual monomer units cloned in hybrid plasmids, (2) mixtures of adjacent monomers from a cloned segment of this satellite DNA, (3) mixtures of monomer units isolated by restriction nuclease cleavage of total 1.688 g/cm3 satellite DNA. Both direct sequence determination and restriction nuclease cleavage indicate that certain positions in the repeat can be highly variable with up to 50% of certain restriction sites having altered recognition sequences. Despite the high degree of variation at certain sites, most positions in the sequence are highly conserved. Sequence analysis of a mixture of 15 adjacent monomer units detected only nine variable positions out of 359 base-pairs. Total satellite DNA showed only four additional positions. While some variability would have been missed due to the sequencing methods used, we conclude that the variation from one repeat to the next is not random and that most of the satellite repeat is conserved. This conservation may reflect functional aspects of the repeated DNA, since we have shown earlier that part of this sequence serves as a binding site for a sequence-specific DNA binding protein isolated from Drosophila embryos (Hsieh &; Brutlag, 1979).  相似文献   

5.
Very abundant and homogenous satellite DNA has been found in the flour beetle Palorus ratzeburgii, representing 40% of its genome. Sequencing of 14 randomly cloned satelite monomers revealed a conserved monomer length of 142 bp and an average A+T content of 68%. Sequence variation analysis showed that base substitutions, appearing with a frequency of 2.3%, are predominant differences among satellite monomers. The satellite sequence is unique without significant direct repeats and with only two potentially stable inverted repeats. After electrophoresis of satellite monomers on native polyacrylamide gel retarded mobilities characteristic for curved DNA molecules are observed. The curvature profiles and DNA helix axis trajectory are calculated on the basis of three different algorithms. These calculations predict that P ratzeburgii satellite DNA forms a left-handed solenoid superstructure. Comparison of described features with other satellite DNAs reveals some striking similarities with satellite DNA from related species Tenebrio molitor, which belongs to the same family of Tenebrionidae. Both satellites are very abundant and homogenous with the same, highly conserved monomer length, although there is no homology at the nucleotide level. Their monomers, as well as multimers, exhibit very similar retarded electrophoretic mobilities. The calculated curvature profiles predict two bend centers in monomers of each satellite, resulting in a model of left-handed solenoid superstructures of similar appearance.  相似文献   

6.
Identical satellite DNA sequences in sibling species of Drosophila   总被引:4,自引:0,他引:4  
The evolution of simple satellite DNAs was examined by DNA-DNA hybridization of ten Drosophila melanogaster satellite sequences to DNAs of the sibling species, Drosophila simulans and Drosophila erecta. Seven of these repeat types are present in tandem arrays in D. simulans and each of the ten sequences is repeated in D. erecta. In thermal melts, six of the seven satellite sequences in D. simulans and seven of the ten sequences in D. erecta melted within 1 deg.C of the corresponding values in D. melanogaster. The remaining sequences melted within 3 deg.C of the homologous hybrids. Therefore, there is little or no alteration in those satellite sequences held in common, despite a period of about ten million years since the divergence of D. melanogaster and D. simulans from a common ancestor. Simple satellite sequences appear to be more highly conserved than coding regions of the genome, on a per nucleotide basis. Since multiple copies of three satellite sequences could not be detected in D. simulans yet are present in D. erecta, a species more distantly related to D. melanogaster than is D. simulans, these sequences show discontinuities in evolution. There were major quantitative variations between species, showing that satellite DNAs are prone to massive amplification or diminution events over timespans as short as those separating sibling species. In D. melanogaster, these sequences amount to 21% of the genome but only 5% in D. simulans and 0.4% in D. erecta. There was a general trend of lower abundance with evolutionary distance for most satellites, suggesting that the amounts of different satellite sequences do not vary independently during evolution.  相似文献   

7.
Arntzen JW 《Chromosoma》2002,111(4):284-288
A phylogenetic network of 244 satellite DNA sequences across five species of aquatic salamanders (genus Triturus) revealed four types of satellite DNAs in a 'p'-shaped 1-2*-3-4-2* arrangement. Analysis of dimer and trimer DNA sequences revealed a prevalence of homosequential (e.g. 1-1, 2-2) and particular (1-4 and 2-3) heterosequential repeat motifs. Genetic diversity across types and species phylogeny indicated that type 1 and type 4 are derived from types 2 and 3. Support was also found for alternating motifs in Palorus flour beetle tandem repeats. The results were statistically significant, whether or not the underlying satellite DNA phylogenies were robust under bootstrap analysis.  相似文献   

8.
J I Mullins  M Blumenfeld 《Cell》1979,17(3):615-621
In this study, we isolated and characterized a previously undetected cryptic satellite DNA comprising 0.1% of the total nuclear genome of D. virilis. This satellite is hidden from detection in neutral CsCl by satellite I and is therefore designated cryptic satellite I or Ic. Sequence analysis reveals that Ic is the repeating heptanucleotide [poly d(AATATAG): d(CTATATT)]. It is more closely related to the three simple sequence satellite DNAs of D. melanogaster, a distantly related species, than it is to any of the major D. virilis satellite DNA sequences. Ic may therefore be a link between the simple sequence satellites of D. virilis and D. melanogaster. As an extension of this theory, we have constructed a "family tree" linking the satellites of D. virilis and D. melanogaster by a series of "simple" operations. Only one intermediate required by this evolutionary scheme has not yet been identified.  相似文献   

9.
Summary Another satellite DNA repeat (type IV) in the genome of Cucumis sativus (cucumber) was found and investigated with respect to DNA sequence, methylation, and evolution. This satellite shows a repeat length of 360 bp and a GC-content of 47%. The repeats of type IV are highly conserved among each other. Evidence for CG and CNG methylation is presented. By comparison to the previously described satellites (type I/II and type III) from cucumber, it is evident that this repeat is created by an insertion of a 180 bp DNA sequence similar to type I–III into another DNA sequence (or vice versa), and subsequent amplification forming a new satellite repeat. The different satellites of the type I/II, type III, and the 180 bp insert of type IV show a sequence homology of 60%–70%, indicating that the complex satellite DNA of cucumber is originated from a common progenitor by mutation, additional insertion, and amplification events. Copies of a sequence similar to a part of type IV are present in the genome of the related species Cucumis melo (melon).  相似文献   

10.
A novel highly abundant satellite DNA comprising 20% of the genome has been characterized in Palorus subdepressus (Insecta, Coleoptera). The 72-bp-long monomer sequence is composed of two copies of T2A5T octanucleotide alternating with 22-nucleotide-long elements of an inverted repeat. Phylogenetic analysis revealed clustering of monomer sequence variants into two clades. Two types of variants are prevalently organized in an alternating pattern, thus showing a tendency to generate a new complex repeating unit 144 bp in length. Fluorescent in situ hybridization revealed even distribution of the satellite in the region of pericentric heterochromatin of all 20 chromosomes. P. subdepressus satellite sequence is clearly species specific, lacking similarity even with the satellite from congeneric species P. ratzeburgii. However, on the basis of similarity in predicted tertiary structure induced by intrinsic DNA curvature and in repeat length, P. subdepressus satellite can be classified into the same group with satellites from related tenebrionid species P. ratzeburgii, Tenebrio molitor, and T. obscurus. It can be reasonably inferred that repetitive sequences of different origin evolve under constraints to adopt and conserve particular features. Obtained results suggest that the higher-order structure and repeat length, but not the nucleotide sequence itself, are maintained through evolution of these species. Received: 23 April 1997 / Accepted: 11 July 1997  相似文献   

11.
Variation in satellite DNA profiles--causes and effects   总被引:11,自引:0,他引:11  
Ugarković D  Plohl M 《The EMBO journal》2002,21(22):5955-5959
Heterochromatic regions of the eukaryotic genome harbour DNA sequences that are repeated many times in tandem, collectively known as satellite DNAs. Different satellite sequences co-exist in the genome, thus forming a set called a satellite DNA library. Within a library, satellite DNAs represent independent evolutionary units. Their evolution can be explained as a result of change in two parameters: copy number and nucleotide sequence, both of them ruled by the same mechanisms of concerted evolution. Individual change in either of these two parameters as well as their simultaneous evolution can lead to the genesis of species-specific satellite profiles. In some cases, changes in satellite DNA profiles can be correlated with chromosomal evolution and could possibly influence the evolution of species.  相似文献   

12.
Satellite DNA sequences in Drosophila virilis   总被引:24,自引:0,他引:24  
  相似文献   

13.
One major very highly repeated (VHR) DNA (approximately 7 X 10(6) copies/genome; repeat unit = 156 base pairs (bp)), a family of three minor VHR DNAs (approximately 2.8 X 10(6) copies/genome; repeat units = 71-74 bp), and a number of trace components account for almost 30% of the genome of a hermit crab. The repeat units of the three minor variants are defined by identical 14-bp G + C-rich inverted repeats that might form cruciforms. Two copies of the repeat unit (CCTA) of one of two patent satellites of this crab (Skinner, D. M., and Beattie, W. G. (1974) Biochemistry 13, 3922-3929; Skinner, D. M., Beattie, W. G., Blattner, F. R., Stark, B. P., and Dahlberg, J. E. (1974) Biochemistry 13, 3930-3937) occur at the center of one in seven of the G + C-rich inverted repeats; copies of the other patent satellite (Chambers, C. A., Schell, M. P., and Skinner, D. M. (1978) Cell 13, 97-110) are found in main component DNA. The sequences of both the major and minor VHR DNAs are characterized by short tracts of An and/or Tn (n = 4-7) residues whose presence would permit the formation of perfectly matched stems separated by loops of 8-16 bp. The An and/or Tn tracts are interspersed with segments of G + C-rich DNA and are arranged differently in the major and minor VHR DNAs. Although the repeat units of the major and the three minor VHR DNAs are arranged in tandem, the composition and sequence of their bases are such that they do not form distinct bands in CsCl gradients; they are cryptic satellites.  相似文献   

14.
A. R. Lohe  A. J. Hilliker    P. A. Roberts 《Genetics》1993,134(4):1149-1174
Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin.  相似文献   

15.
The repetitive sequence PisTR-A has an unusual organization in the pea (Pisum sativum) genome, being present both as short dispersed repeats as well as long arrays of tandemly arranged satellite DNA. Cloning, sequencing and FISH analysis of both PisTR-A variants revealed that the former occurs in the genome embedded within the sequence of Ty3/gypsy-like Ogre elements, whereas the latter forms homogenized arrays of satellite repeats at several genomic loci. The Ogre elements carry the PisTR-A sequences in their 3′ untranslated region (UTR) separating the gag-pol region from the 3′ LTR. This region was found to be highly variable among pea Ogre elements, and includes a number of other tandem repeats along with or instead of PisTR-A. Bioinformatic analysis of LTR-retrotransposons mined from available plant genomic sequence data revealed that the frequent occurrence of variable tandem repeats within 3′ UTRs is a typical feature of the Tat lineage of plant retrotransposons. Comparison of these repeats to known plant satellite sequences uncovered two other instances of satellites with sequence similarity to a Tat-like retrotransposon 3′ UTR regions. These observations suggest that some retrotransposons may significantly contribute to satellite DNA evolution by generating a library of short repeat arrays that can subsequently be dispersed through the genome and eventually further amplified and homogenized into novel satellite repeats.  相似文献   

16.
A Hin dIII repetitive DNA family from Acrossocheilus paradoxus , a cyprinid fish endemic to Taiwan, was isolated and identified as a tandem arrangement of satellites in the genomic DNA. Cross-hybridization revealed similar patterns across fish genera and two families and suggested that this repetitive DNA is a conserved satellite sequence in fish. Forty-five monomeric repeat units of the repetitive DNA were cloned and sequenced, and found to be approximately 210 base pairs long and to have an average base composition of 52·8% A+T. Alignment analysis by examining 45 cloned repeat DNA strands from 22 individuals from nine different streams suggested that this repetitive DNA is highly polymorphic. The variability of sequences was mainly attributable to point mutations within the sequences. Genetic distances in all repeated DNAs ranged from 0 to 0·129 (average, 0·06). The high levels of genotype diversity and low levels of nucleotide diversity in satellites suggest population expansion of A. paradoxus .  相似文献   

17.
Jo SH  Park HM  Kim SM  Kim HH  Hur CG  Choi D 《Heredity》2011,106(5):876-885
Tandemly repeated DNAs, referred to as satellite DNAs, often occur in a genome in a genus-specific manner. However, the mechanisms for generation and evolution for these sequences are largely unknown because of the uncertain origins of the satellite DNAs. We found highly divergent genus-specific satellite DNAs that showed sequence similarity with genus-specific intergenic spacers (IGSs) in the family Solanaceae, which includes the genera Nicotiana, Solanum and Capsicum. The conserved position of the IGS between 25S and 18S rDNA facilitates comparison of IGS sequences across genera, even in the presence of very low sequence similarity. Sequence comparison of IGS may elucidate the procedure of the genesis of complex monomer units of the satellite DNAs. Within the IGS of Capsicum species, base substitutions and copy number variation of subrepeat monomers were causes of monomer divergence in IGS sequences. At the level of inter-generic IGS sequences of the family Solanaceae, however, genus-specific motif selection, motif shuffling between subrepeats and differential amplification among motifs were involved in formation of genus-specific IGS. Therefore, the genus-specific satellite DNAs in Solanaceae plants can be generated from differentially organized repeat monomers of the IGS rather than by accumulation of mutations from pre-existent satellite DNAs.  相似文献   

18.
Two long repeats, MS3 and MS4, are predominantly located in sex-chromosomal heterochromatin in common vole species. Their tandem arrangement was revealed by means of the PCR analysis of genomic DNAs of four Microtus species and by restriction mapping of clones selected from a M. rossiaemeridionalis genomic library. Several mobile elements proved incorporated in a monomeric unit of each repeat and amplified together with its other components. In addition, LINE inserts were found in MS4 tandem arrays. The copy number of both repeats per haploid genome was estimated at 100-300 for euchromatin and 20,000-40,000 for the M. rossiaemeridionalis genome. The repeats were assumed to be the major component of sex-chromosomal heterochromatin DNA.  相似文献   

19.
20.
According to the library model, related species can have in common satellite DNA (satDNA) families amplified in differing abundances, but reasons for persistence of particular sequences in the library during long periods of time are poorly understood. In this paper, we characterize 3 related satDNAs coexisting in the form of a library in mitotic parthenogenetic root-knot nematodes of the genus Meloidogyne. Due to sequence similarity and conserved monomer length of 172 bp, this group of satDNAs is named MEL172. Analysis of sequence variability patterns among monomers of the 3 MEL172 satellites revealed 2 low-variable (LV) domains highly reluctant to sequence changes, 2 moderately variable (MV) domains characterized by limited number of mutations, and 1 highly variable (HV) domain. The latter domain is prone to rapid spread and homogenization of changes. Comparison of the 3 MEL172 consensus sequences shows that the LV domains have 6% changed nucleotide positions, the MV domains have 48%, whereas 78% divergence is concentrated in the HV domain. Conserved distribution of intersatellite variability might indicate a complex pattern of interactions in heterochromatin, which limits the range and phasing of allowed changes, implying a possible selection imposed on monomer sequences. The lack of fixed species-diagnostic mutations in each of the examined MEL172 satellites suggests that they existed in unaltered form in a common ancestor of extant species. Consequently, the evolution of these satellites seems to be driven by interplay of selective constraints and stochastic events. We propose that new satellites were derived from an ancestral progenitor sequence by nonrandom accumulation of mutations due to selective pressure on particular sequence segments. In the library of particular taxa, established satellites might be subject to differential amplification at chance due to stochastic mechanisms of concerted evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号