首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases   总被引:14,自引:0,他引:14  
The proteolytic activity of four hemorrhagic metalloproteinases (Ht-a, c, d, and e) isolated from the venom of the Western diamondback rattlesnake (Crotalus atrox) was investigated using isolated extracellular matrix (ECM) proteins. We determined that all of the proteinases are capable of cleaving fibronectin, laminin, type IV collagen, nidogen (entactin), and gelatins. However, none of the proteinases were proteolytic against the interstitial collagen types I and III or type V collagen. With all of the substrates listed above Ht-c and Ht-d produced identical digestion patterns, as would be expected for these isoenzymes. With fibronectin, Ht-a produces a different ratio of products from Ht-c and Ht-d, while Ht-e produces a unique pattern of digestion. Ht-e and Ht-a produced nonidentical patterns with the laminin/nidogen preparation although some similarity was shared between them as well as with the Ht-c/d digestion pattern. Similar results were also observed for these proteinases with nidogen 150 as the substrate. The type IV collagen digestion patterns by Ht-e and Ht-a were similar to the pattern observed with Ht-c/d but differed by two bands. The digestion patterns of the three gelatins produced by the proteinases show differences between Ht-c and Ht-d when compared to Ht-e and Ht-a. This investigation clearly shows that several of the ECM proteins are efficiently digested by these toxins. The proteinases have some digestion sites in common but show differing specificities. In addition, the range of ECM proteins digested by these hemorrhagic proteinases is nearly identical to that demonstrated by the ECM proteinase stromelysin (MMP-3). From these data, and the knowledge of the roles these ECM proteins have in maintaining basement membrane structural/functional integrity, one can envision that the degradation of these ECM proteins could readily lead to loss of capillary integrity resulting in hemorrhage occurring at those sites.  相似文献   

2.
Two hemorrhagic proteinases from Crotalus atrox venom, hemorrhagic toxin c (Ht-c) and hemorrhagic toxin d (Ht-d), were characterized and compared to one another. The two toxins are zinc metalloproteinases which both have molecular weights of 24,000. Their isoelectric points are slightly acidic, Ht-c being the more basic of the two with an isoelectric point of 6.2, whereas Ht-d has an isoelectric point of 6.1. Only minor differences were found in the amino acid compositions of the two toxins. The toxins were both demonstrated to be hemorrhagic, using an in vivo assay, and also proteolytic. Prior treatment of the hemorrhagic proteinases with ethylenediaminetetraacetic acid and o-phenanthroline eliminated both the hemorrhagic and the proteolytic activities. Aprotinin and phenylmethylsulfonyl fluoride had no effect upon these activities. The pH optimum of the proteolysis by Ht-c and Ht-d on hide powder azure as the substrate was between pH 8 and pH 9. The circular dichroism spectra for Ht-c and Ht-d appear almost identical with respect to minima positions and elipticities, indicative of very similar solution structures for the two enzymes. Antiserum raised in mice against Ht-c was assayed on double-diffusion Ouchterlony plates for cross-reactivity with other hemorrhagic toxins from C. atrox venom. From this experiment it was concluded that the two hemorrhagic proteinases Ht-c and Ht-d share identical antigenic structures. This was corroborated by tryptic mapping of the two toxins. Only one major difference was observed from the maps. In the case of Ht-c, it was determined that an aspartate was substituted by an alanine when compared to Ht-d. From these characterization studies we conclude that Ht-c and Ht-d are isoenzymes with only very minor differences in their structures.  相似文献   

3.
A novel type IV collagen-degrading metalloproteinase was purified from the conditioned media of a murine metastatic sarcoma cell line. The molecular weight of the purified enzyme was determined to be 100 kDa by SDS-PAGE, while 700 kDa by gel filtration suggesting that the enzyme has a multimer structure. This enzyme degrades type IV collagen, but neither type I collagen nor casein. The failure of trypsin treatment to enhance the enzyme activity suggested that the purified enzyme did not require activation. Although the enzyme seems to be classified as a matrix metalloproteinase, it was inhibited by neither tissue inhibitor of metalloproteinases (TIMP) nor TIMP-2 and thus represents a novel type IV collagen-degrading metalloproteinase.  相似文献   

4.
A peptide specific antibody (AH1OW1) was raised against an epitope, AH10 (aa 449-463), of the alpha1(IV) chain adjacent to a cleavage site for matrix metalloproteinases (MMP)-2 and -9 within the triple helix of type IV collagen. The antibody only reacted with denatured and reduced preparations of type IV collagen, or with pepsin isolated type IV collagen digested with MMP-2 and MMP-9. The specificity of this antibody for the denatured triple helix was demonstrated by the lack of staining with pre-immune antibody and by pre-incubation of AH1OW1 antibody with excess AH10 peptide epitope. The AH1OWI antibody was used to detect whether proteolysis of type IV collagen occurs in ulcerative colitis, an inflammatory bowel condition often characterised by a large influx of granulocytes and macrophages and an associated tissue destruction. However, no evidence of in situ proteolysis of the basement membrane type IV collagen was observed. Only in the most actively inflamed mucosa was staining with AH1OW1 antibody observed in the mucosal connective tissue. Digestion of frozen sections of bowel with MMP-1, MMP-2, MMP-3 and MMP-9 did not result in the exposure of the AH10 epitope. These data demonstrate the stability of intact type IV collagen and indicate that susceptibility of alpha1(IV) chain to digestion with MMP-2 and MMP-9 may require other proteolytic/denaturing events in the molecule.  相似文献   

5.
Two major gelatinolytic metalloproteinases (gelatinases) of 65 kDa and 92 kDa were purified from a tumor cell line. Analysis of collagen degradation showed that native full-length Engelbreth-Holm-Swarm (EHS) type IV collagen was not cleaved by the purified gelatinases under conditions where native pepsin-extracted human placental type IV and V collagen and heat-denatured collagens were markedly degraded. However, EHS type IV collagen degradation was noted at 37 degrees C, i.e., under conditions that would favor denaturation of the collagen molecule in solution. The pattern of degradation of human placental type IV and V collagen appeared similar for both gelatinases. Zymogram analysis of gelatinase activity in the absence of sodium dodecyl sulfate (SDS) (to eliminate possible SDS-mediated denaturation of type IV collagen) confirmed the inability of 65 and 92-kDa gelatinases to degrade native full-length EHS type IV collagen. Under the same conditions and in SDS-polyacrylamide gel electrophoresis zymograms the gelatinases degraded pepsin-predigested EHS type IV collagen and pepsin-extracted human placental type IV collagen. These data suggest that the 65- and 92-kDa tumor cell gelatinases are not true type IV collagenases. Their ability to degrade pepsin-solubilized, or denatured, type IV collagen suggests a specificity for telopeptide precleaved or conformationally altered forms of this molecule.  相似文献   

6.
The interaction between four Crotalus atrox hemorrhagic metalloproteinases and human alpha 2-macroglobulin was investigated. The proteolytic activity of the hemorrhagic toxins Ht-c, -d, and -e against the large molecular weight protein substrates, gelatin type I and collagen type IV, was completely inhibited by alpha 2-macroglobulin. The proteolytic activity of Ht-a against the same substrates was not significantly inhibited. Each mole of alpha 2-macroglobulin bound maximally 2 mol of Ht-e and 1.1 mol of Ht-c and Ht-d. These proteinases interacted with alpha 2-macroglobulin rapidly at 22 degrees C. Rate constants based on intrinsic fluorescence measurements were 0.62 X 10(5) M-1 s-1 for interaction of alpha 2-macroglobulin with Ht-c and -d and 2.3 X 10(5) M-1 s-1 for the interaction of alpha 2-macroglobulin with Ht-e. Ht-a interacted with alpha 2-macroglobulin very slowly at 22 degrees C. Increasing the temperature to 37 degrees C and prolonging the time of interaction with alpha 2-macroglobulin resulted in the formation of Mr 90,000 fragments and high molecular weight complexes (Mr greater than 180,000), in which Ht-a is covalently bound to the carboxy-terminal fragment of alpha 2-M. The identification of the sites of specific proteolysis of alpha 2-macroglobulin shows that the cleavage sites for the four metalloproteinases are within the bait region of alpha 2-macroglobulin. Ht-c and -d cleave only at one site, the Arg696-Leu697 peptide bond, which is also the site of cleavage for plasmin, thrombin, trypsin, and thermolysin. Ht-a cleaves alpha 2-macroglobulin primarily at the same site, but a secondary cleavage site at the His694-Ala695 peptide bond was also identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The metalloproteinase 'gelatinase' stored in the granules of pig polymorphonuclear leucocytes has been purified in the latent form. The enzyme is secreted as an Mr 97,000 proenzyme that can be activated in the presence of 4-aminophenylmercuric acetate (APMA) by self-cleavage to generate lower-Mr species, of which an Mr 88,000 form was the most active. Trypsin-initiated activation generated different Mr gelatinases of much lower specific activity. Activation was slowed but not prevented by the presence of the tissue inhibitor of metalloproteinases, TIMP. The activated gelatinase formed a stable complex (Mr 144,000) with TIMP, in a Zn2+- and Ca2+-dependent manner, and complex formation was inhibited by the presence of the substrate gelatin. Similar to the human granulocyte gelatinase, the organomercurial-activated pig enzyme degraded gelatin and TCA and TCB fragments of type I collagen, as well as elastin and types IV and V collagen. The degradation of type IV collagen was shown, both by polyacrylamide-gel electrophoresis and by electron microscopic analysis, to generate 3/4 and 1/4 fragments as described for mouse tumour type IV collagenase. Furthermore, an antiserum raised to mouse type IV collagenase recognized the pig granulocyte gelatinase. An antiserum to the pig polymorphonuclear leucocyte gelatinase recognized other high-Mr gelatinases, including those from human granulocytes, pig monocytes and rabbit connective tissue cells, but not the Mr 72,000 enzyme from connective tissue cells. These data suggest that there are two distinct major forms of gelatinolytic activity that also cause specific cleavage of type IV collagen. These enzymes are associated with a wide variety of normal connective tissue and haemopoietic cells, as well as many tumour cells.  相似文献   

8.
Gel-filtration chromatography of culture medium from rabbit bone explants separates three latent metalloproteinases with activities against collagen, proteoglycan and gelatin respectively. The fractions degrading proteoglycan also degrade laminin, fibronectin and the polymeric products of pepsin-solubilized type IV collagen and can also solubilize insoluble type IV collagen. The fractions degrading gelatin are capable of degrading solubilized type V and 1 alpha,2 alpha,3 alpha (cartilage) collagens, as well as the lower-molecular-weight products of pepsin-solubilized type IV collagen. All activities can be inhibited by 1,10-phenanthroline and occur in either partially or totally latent forms that can be activated by 4-aminophenylmercuric acetate.  相似文献   

9.
10.
Interactions of basement membrane components   总被引:23,自引:0,他引:23  
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain (Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

11.
A neutral proteinase, capable of degrading gelatin, has been found in both an active and a latent form in the medium from the culture of rat mesangial cells. The latent form had an Mr of 80,000-100,000 and could be activated with either 4-aminophenylmercuric acetate or prolonged incubation at neutral pH. The active form of the enzyme was extensively purified. The estimated Mr of the purified enzyme on gel filtration was approximately 200,000, indicating that the active enzyme formed aggregates. However, analysis by SDS/polyacrylamide-gel electrophoresis under reducing conditions showed two protein bands, with Mr 68,000 and 66,000. Both proteins were found to contain proteolytic activity when run on SDS/substrate gels. The enzyme was inhibited by EDTA and 1,10-phenanthroline, but not by inhibitors for cysteine, serine or aspartic proteinases. The enzyme did not digest fibronectin, bovine serum albumin, proteoglycan or interstitial collagen. The enzyme degraded pepsin-solubilized placental type V collagen at 31 degrees C, whereas similarly solubilized type IV collagen was only degraded at higher temperatures. In addition, the neutral proteinase degraded native soluble type IV collagen. It also had activity on insoluble type IV collagen of glomerular basement membrane. The above properties suggest that the mesangial neutral proteinase belongs to the gelatinase group of metalloproteinases and that it may play a role in the normal turnover of extracellular glomerular matrix.  相似文献   

12.
The location of the epitopes for monoclonal antibodies against chicken type IV and type V collagens were directly determined in the electron microscope after rotary shadowing of antibody/collagen mixtures. Three monoclonal antibodies against type IV collagen were examined, each one of which was previously demonstrated to be specific for only one of the three pepsin-resistant fragments of the molecule. The three native fragments were designated (F1)2F2, F3, and 7S, and the antibodies that specifically recognize each fragment were called, respectively, IA8 , IIB12 , and ID2 . By electron microscopy, monoclonal antibody IA8 recognized an epitope located in the center of fragment (F1)2F2 and in tetramers of type IV collagen at a distance of 288 nm from the 7S domain, the region of overlap of four type IV molecules. Monoclonal antibody IIB12 , in contrast, recognized an epitope located only 73 nm from the 7S domain. This result therefore provides direct visual evidence that the F3 fragment is located closest to the 7S domain and the order of the fragments must be 7S-F3-(F1)2F2. The epitope for antibody ID2 was located in the overlap region of the 7S domain, and often several antibody molecules were observed to binding to a single 7S domain. The high frequency with which antibody molecules were observed to bind to fragments of type IV collagen suggests that there is a single population of type IV molecules of chain organization [alpha 1(IV)]2 alpha 2(IV), and that four identical molecules must form a tetramer that is joined in an antiparallel manner at the 7S domain. The monoclonal antibodies against type V collagen, called AB12 and DH2 , were both found to recognize epitopes close to one another, the epitopes being located 45-48 nm from one end of the type V collagen molecule. The significance of this result still remains uncertain, but suggests that this site is probably highly immunoreactive. It may also be related to the specific cleavage site of type V collagen by selected metalloproteinases and by alpha-thrombin. This cleavage site is also known to be located close to one end of the type V molecule.  相似文献   

13.
Human rheumatoid synovial cells in culture secrete at least three related metalloproteinases that digest extracellular matrix macromolecules. One of them, termed matrix metalloproteinase 2 (MMP-2), has been purified as an inactive zymogen (proMMP-2). The final product is homogeneous on SDS/PAGE with Mr = 72,000 under reducing conditions. The NH2-terminal sequence of proMMP-2 is Ala-Pro-Ser-Pro-Ile-Ile-Lys-Phe-Pro-Gly-Asp-Val-Ala-Pro-Lys-Thr, which is identical to that of the so-called '72-kDa type IV collagenase/gelatinase'. The zymogen can be rapidly activated by 4-aminophenylmercuric acetate to an active form of MMP-2 with Mr = 67,000, and the new NH2-terminal generated is Tyr-Asn-Phe-Phe-Pro-Arg-Lys-Pro-Lys-Trp-Asp-Lys-Asn-Gln-Ile. However, following 4-aminophenylmercuric acetate activation, MMP-2 is gradually inactivated by autolysis. Nine endopeptidases (trypsin, chymotrypsin, plasmin, plasma kallikrein, thrombin, neutrophil elastase, cathepsin G, matrix metalloproteinase 3, and thermolysin) were tested for their abilities to activate proMMP-2, but none had this ability. This contrasts with the proteolytic activation of proMMP-1 (procollagenase) and proMMP-3 (prostromelysin). The optimal activity of MMP-2 against azocoll is around pH 8.5, but about 50% of activity is retained at pH 6.5. Enzymic activity is inhibited by EDTA, 1,10-phenanthroline or tissue inhibitor of metalloproteinases, but not by inhibitors of serine, cysteine or aspartic proteinases. MMP-2 digests gelatin, fibronectin, laminin, and collagen type V, and to a lesser extent type IV collagen, cartilage proteoglycan and elastin. Comparative studies on digestion of collagen types IV and V by MMP-2 and MMP-3 (stromelysin) indicate that MMP-3 degrades type IV collagen more readily than MMP-2, while MMP-2 digests type V collagen effectively. Biosynthetic studies of MMPs using cultured human rheumatoid synovial fibroblasts indicated that the production of both proMMP-1 and proMMP-3 is negligible but it is greatly enhanced by the treatment with rabbit-macrophage-conditioned medium, whereas the synthesis of proMMP-2 is constitutively expressed by these cells and is not significantly affected by the treatment. This suggests that the physiological and/or pathological role of MMP-2 and its site of action may be different from those of MMP-1 and MMP-3.  相似文献   

14.
Cleavage of the 45-kDa gelatin-binding fragment of human plasma fibronectin with fibronectinase resulted in the activation of two forms of metalloproteinase with different substrate specificities. The 40-kDa FN-type-IV collagenase A degrades heat-denatured type-I collagen, laminin and also native collagen type IV. The 27-kDa FN-type-IV collagenase B degrades native collagen type IV, but it does not cleave laminin and only poorly degrades gelatin. Both enzymes begin with the same N-terminal sequence VYQPQPH- (residues 262-268 of fibronectin) but, contrary to the FN-type-IV collagenase A, the FN-type-IV collagenase B has lost the C-terminal region of type I repeats, where the major gelatin-binding determinants of fibronectin are located. The FN-type-IV collagenases A and B are sequentially similar to the middle domain (domain II) of collagenase type IV, secreted by H-ras-transformed human bronchial epithelial cells. Substrate and inhibition specificity of FN-type-IV collagenase A and B are different from those of FN-gelatinase and FN-laminase, isolated previously from the central and C-terminal fibronectin domains, respectively. The substrate specificity of both enzymes, characterized in this study, is also different from that of already known matrix-degrading metalloproteinases.  相似文献   

15.
Two kinds of gelatinases (or type IV collagenases), 90-kDa and 64-kDa gelatinases, were purified in a tissue inhibitor of metalloproteinases (TIMP)- or TIMP-2-free form from the serum-free conditioned medium of human schwannoma YST-3 cells, and their activities on extracellular matrix proteins were compared. Sequential chromatographies on a gelatin-Sepharose column, an LCA-agarose column, and a gel filtration column in the presence of 5 M urea yielded 600 micrograms of the 64-kDa enzyme and 45 micrograms of the 90-kDa enzyme from 2.8 liters of the conditioned medium. The purified enzymes showed high gelatinolytic activities without activation by p-aminophenyl mercuric acetate (APMA), indicating that 5 M urea used in the final chromatography not only dissociated the inhibitors from the progelatinases but also activated the proenzymes. The inhibitor-free gelatinases showed a much higher activity than the APMA-activated inhibitor-bound enzymes. The specific activity of the 90-kDa enzyme was nearly 25 times higher than that of the 64-kDa enzyme. The 90-kDa gelatinase hydrolyzed type I collagen as well as native and pepsin-treated type IV collagens at 30 degrees C, while at 37 degrees C it potently hydrolyzed types I, III, and IV collagens but not fibronectin or laminin. The 64-kDa gelatinase showed a similar substrate specificity to that of the 90-kDa enzyme, except that it did not hydrolyze type I collagen and native type IV collagen at 30 degrees C.  相似文献   

16.
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

17.
A neutral protease has been extracted from the media of cultured metastatic tumor cells and purified approximately 1000 times after sequential ammonium sulfate fractionization, concanavalin A column chromatography, and molecular sieve chromatography. The protease has an apparent molecular weight of 70 000--80 000, is inactive at acid pH, requires trypsin activation, and is inhibited by ethylene-diaminetetraacetic acid but not by phenylmethanesulfonyl fluoride, N-ethylmaleimide, or soybean trypsin inhibitor. The enzyme produces specific cleavage products for both chains of pro type IV collagen isolated without pepsinization and apparently cleaves at one point in a major pepsin-extracted chain of placenta type IV collagen. The partially purified enzyme fails to significantly degrade other collagens or fibronectin under digestion conditions in which specific reaction products are produced for type IV collagen. The existence of this enzyme is significant since previously described animal collagenases fail to degrade type IV collagen. Such a type IV specific collagenase could play a role in tumor invasion and may be secreted by other cells such as endothelial cells, epithelial cells, and immune cells.  相似文献   

18.
Summary In the heart of the adult rat, fibroblasts are mainly responsible for the synthesis and deposition of the collagenous matrix. Because these cells in vitro may serve as an important model system for studies of collagen metabolism in heart tissue, we have cultured and characterized rat-heart fibroblasts from young adult and old animals. Conditions included use of media of different compositions with and without addition of ascorbate. Cell used were either cultured directly from fresh tissues or thawed previously frozen cells. Cultured cells were studied with respect to growth properties, morphology and ultrastructure and patterns of collagen. Heart fibroblasts generally resembled fibroblasts cultured from other tissues, but were more like skeletal muscle fibroblasts in that they deposited, in addition to type I collagen, type IV collagen and laminin. The fibroblasts showed a typical appearance in phase-contrast microscopy and electron microscopy. In the case of cells grown with added ascorbate, aligned collagen fibrils in the extracellular matrix showed a periodicity typical of type I collagen. The deposition of type I collagen occurred only in medium supplemented with ascorbate, and in that circumstance increased as a function of time past confluence; this was independent of the age of the animal from which the cells were obtained or of other changes of medium composition studied. Immunofluorescence studies with specific antibodies revealed that the cells deposited types I and IV collagens, laminin and fibronectin. In contrast to the case of type I collagen, the deposition of type IV collagen occurred in cells grown either with or without ascorbate. Direct observation of type IV collagen is consistent with the previous finding of type IV mRNA in cardiac fibroblasts in situ and in freshly isolated populations of these cells.  相似文献   

19.
The matrix metalloproteinase 72-kDa type IV collagenase (also known as gelatinase A) is thought to be involved in both normal connective tissue remodeling and invasive pathological processes. Like other matrix metalloproteinases, 72-kDa type IV collagenase is secreted by fibroblast monolayers as an inactive proenzyme, but is unique among this enzyme family in that it is not activated by serine proteinases such as plasmin. However, when fibroblasts are cultured in a collagen lattice, a situation thought to better approximate in vivo conditions, we have invariably found much of the secreted 72-kDa type IV collagenase in its enzymatically active 62-kDa form. Although collagen lattice contraction appeared to be required for the activation of 72-kDa type IV collagenase, we have found that the process of contraction can be dissociated from proenzyme activation. Both cytochalasin D and α-methylmannoside completely blocked lattice contraction, but not proenzyme activation. Furthermore, the monoclonal antibody M-13, which is directed against the β1 integrin chain, blocked collagen lattice contraction but not 72-kDa type IV procollagenase activation. At concentrations significantly higher than required to block lattice contraction or cell adhesion to collagen, M-13 was able to inhibit proenzyme activation. A second monoclonal antibody to the β1 integrin, P5D2, had little effect on collagen lattice contraction at low concentrations, but could significantly inhibit the activation of 72-kDa type IV procollagenase. Antibodies to the integrin α2 chain also inhibited proenzyme activation. These data show that the activation of 72-kDa type IV collagenase proenzyme, like collagen lattice contraction, is mediated by β1 integrin receptors, possibly α2β1. Although both anti-β1 antibodies used are directed to the same site on the integrin chain, the fact that each antibody preferentially blocks a different event, either lattice contraction or activation of 72-kDa type IV collagenase, suggests the existence of branch points in the receptor-mediated signal transduction pathway.  相似文献   

20.
Type IV collagenase is a metalloproteinase associated with metastatic tumor cells. It specifically cleaves the triple helical basement membrane (type IV) collagen molecule at a single site. Monoclonal antibodies which block the activity of the human type IV collagenase were developed and used to purify this antigen. The purified type IV collagenase was partially sequenced following cyanogen bromide and trypsin cleavage. The amino acid sequence of the human type IV collagenase fragments revealed a region homologous to the human interstitial collagenase and stromelysin. However, several sequences in type IV collagenase were identified which are distinct from the latter. Polyclonal antibodies were raised against a synthetic peptide derived from such a sequence. Following affinity purification, the antibodies recognized the denatured human type IV collagenase in Western immunoblotting. These data indicate that type IV collagenase is a distinct member of a general family of metalloproteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号