首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed transgenic potato plants (Solanum tuberosum L. cv. Taedong Valley) over-expressing strawberry GalUR gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the GalUR gene in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid (AsA) levels in transgenic tubers were determined by high-performance liquid chromatography (HPLC). The over-expression of GalUR resulted in 1.6–2-fold increase in AsA in transgenic potato and the levels of AsA were positively correlated with increased GalUR activity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen (MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of GalUR gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control.  相似文献   

2.
l-Ascorbic acid (Vitamin C, AsA) is an important component of human nutrition. Plants and several animals can synthesize their own ascorbic acid, whereas humans lack the gene essential for ascorbic acid biosynthesis and must acquire from their diet. In the present study, we developed transgenic potato (Solanum tuberosum L. cv. Taedong Valley) over-expressing l-gulono-γ-lactone oxidase (GLOase gene; NCBI Acc. No. NM022220), isolated from rat cells driven by CaMV35S constitutive promoter that showed enhanced AsA accumulation. Molecular analyses of four independent transgenic lines performed by PCR, Southern and RT-PCR revealed the stable integration of the transgene in the progeny. The transformation frequency was ca. 7.5% and the time required for the generation of transgenic plants was 6–7 weeks. Transgenic tubers showed significantly enhanced AsA content (141%) and GLOase activity as compared to untransformed tubers. These transgenics were also found to withstand various abiotic stresses caused by Methyl Viologen (MV), NaCl or mannitol, respectively. The T1 transgenic plants exposed to salt stress (100 mM NaCl) survived better with increased shoot and root length when compared to untransformed plants. The elevated level of AsA accumulation in transgenics was directly correlated with their ability to withstand abiotic stresses. These results further demonstrated that the overexpression of GLOase gene enhanced basal levels of AsA in potato tubers and also the transgenics showed better survival under various abiotic stresses.  相似文献   

3.
The effect of simultaneous expression of genes encoding three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1), in the chloroplasts of tobacco plants was investigated under oxidative stress conditions. In previous studies, transgenic tobacco plants expressing both CuZnSOD and APX in chloroplast (CA plants), or DHAR in chloroplast showed enhanced tolerance to oxidative stresses, such as paraquat and salt. In this study, in order to develop transgenic plants that were more resistant to oxidative stress, we introduced the gene encoding DHAR into CA transgenic plants. Mature leaves of transgenic plants expressing all three antioxidant genes (CAD plants) had approximately 1.6–2.1 times higher DHAR activity, and higher ratios of reduced ascorbate (AsA) to DHA, and oxidized glutathione (GSSG) to reduced glutathione (GSH) compared to CA plants. CAD plants were more resistant to paraquat-induced stress, exhibiting only 18.1% reduction in membrane damage relative to CA plants. In addition, seedlings of CAD plants had enhanced tolerance to NaCI (100 mM) compared to CA plants. These results indicate that the simultaneous expression of multiple antioxidant enzymes, such as CuZnSOD, APX, and DHAR, in chloroplasts is more effective than single or double expression for developing transgenic plants with enhanced tolerance to multiple environmental stresses.  相似文献   

4.
To explore the significance of the ascorbate–glutathione cycle under drought stress, the leaves of 2-year-old potted apple (Malus domestica Borkh.) plants were used to investigate the changes of each component of the ascorbate–glutathione cycle as well as the gene expression of dehydroascorbate reductase (DHAR, EC 1.8.5.1), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) under drought stress. The results showed that the malondialdehyde (MDA) and H2O2 concentrations in apple leaves increased during drought stress and began to decrease after re-watering. The contents of total ascorbate, reduced ascorbic acid (AsA), total glutathione and glutathione (GSH) were obviously upregulated in apple leaves when the soil water content was 40–45%. With further increase of the drought level, the contents of the antioxidants and especially redox state of AsA and GSH declined. However, levels of them increased again after re-watering. Moreover, drought stress induced significant increase of the activities of enzymes such as APX, scavenging H2O2, and also of monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), DHAR and GR used to regenerate AsA and GSH, especially when the soil water content was above 40–45%. During severe drought stress, activities of the enzymes were decreased and after re-watering increased again. Gene expression of cytoplasmic DHAR, cytoplasmic APX and cytoplasmic GR showed similar changes as the enzyme activities, respectively. The results suggest that the ascorbate–glutathione cycle is up-regulated in response to drought stress, but cannot be regulated at severe drought stress conditions.  相似文献   

5.
Plant growth and productivity are adversely affected by various abiotic stress factors. In our previous study, we used Avicennia marina, a halophytic mangrove, as a model plant system for isolating genes functioning in salt stress tolerance. A large scale random EST sequencing from a salt stressed leaf tissue cDNA library of one month old A. marina plants resulted in identification of a clone showing maximum homology to Monodehydroascorbate reductase (Am-MDAR). MDAR plays a key role in regeneration of ascorbate from monodehydroascorbate for ROS scavenging. In this paper, we report the cellular localization and the ability to confer salt stress tolerance in transgenic tobacco of this salt inducible Am-MDAR. A transit peptide at the N-terminal region of Am-MDAR suggested that it encodes a chloroplastic isoform. The chloroplastic localization was confirmed by stable transformation and expression of the Am-MDAR-GFP fusion protein in tobacco. Transgenic tobacco plants overexpressing Am-MDAR survived better under conditions of salt stress compared to untransformed control plants. Assays of enzymes involved in ascorbate–glutathione cycle revealed an enhanced activity of MDAR and ascorbate peroxidase whereas the activity of dehyroascorbate reductase was reduced under salt stressed and unstressed conditions in Am-MDAR transgenic lines. The transgenic lines showed an enhanced redox state of ascorbate and reduced levels of malondialdehyde indicating its enhanced tolerance to oxidative stress. The results of our studies could be used as a starting point for genetic engineering of economically important plants tolerant to salt stress.  相似文献   

6.
Salt-tolerance was studied in transgenic potato. It was conferred by overexpression of ascorbate pathway enzyme (d-galacturonic acid reductase, GalUR). As genetic engineering of the GalUR gene in potato enhances its ascorbic acid content (l-AsA), and subsequently plants suffered minimal oxidative stress-induced damage, we now report on the comprehensive aptness of this engineering approach for enhanced salt tolerance in transgenic potato (Solanum tuberosum L. cv. Taedong Valley). Potatoes overexpressing GalUR grew and tuberized in continuous presence of 200 mM of NaCl. The transgenic plants maintained a higher reduced to oxidized glutathione (GSH:GSSG) ratio together with enhanced activity of glutathione dependent antioxidative and glyoxalase enzymes under salinity stress. The transgenics resisted an increase in methylglyoxal that increased radically in untransformed control plants under salinity stress. This is the first report of genetic engineering of ascorbate pathway gene in maintaining higher level of GSH homeostasis along with higher glyoxalase activity inhibiting the accumulation in methylglyoxal (a potent cytotoxic compound) under salt stress. These results suggested the engineering of ascorbate pathway enzymes as a major step towards developing salinity tolerant crop plants.  相似文献   

7.
Ascorbic acid (AsA, vitamin C) is one of the most important nutritional quality factors in many horticultural crops and has many biological activities in the human body. Dehydroascorbate reductase (EC 1.8.5.1; DHAR) plays an important role in maintaining the normal level of ascorbic acid (AsA) by recycling oxidized ascorbic acid. To increase AsA content of potato, we isolated and characterized the cDNAs encoding two isoform DHARs localized in cytosol and chloroplast from potato, and developed two types of transgenic potato plants overexpressing cytosolic DHAR gene and chloroplastic DHAR, respectively. Incorporation of the transgene in the genome of potato was confirmed by PCR and real time RT-PCR. The overexpression of cytosolic DHAR significantly increased DHAR activities and AsA contents in potato leaves and tubers, whereas chloroplastic DHAR overexpression only increased DHAR activities and AsA contents in leaves, and did not change them in tubers. These results indicated that AsA content of potato can be elevated by enhancing recycling ascorbate via DHAR overexpression, moreover, cytosolic DHAR might play main important roles in improving the AsA contents of potato tubers.  相似文献   

8.
9.
10.
Ascorbate (AsA) is a major antioxidant and free-radical scavenger in plants. Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is crucial for AsA regeneration and essential for maintaining a reduced pool of AsA. To examine whether an overexpressed level of MDAR could minimize the deleterious effects of environmental stresses, we developed transgenic tobacco plants overexpressing Arabidopsis thaliana MDAR gene (AtMDAR1) in the cytosol. Incorporation of the transgene in the genome of tobacco plants was confirmed by PCR and Southern-blot analysis and its expression was confirmed by Northern- and Western-blot analyses. These transgenic plants exhibited up to 2.1-fold higher MDAR activity and 2.2-fold higher level of reduced AsA compared to non-transformed control plants. The transgenic plants showed enhanced stress tolerance in term of significantly higher net photosynthesis rates under ozone, salt and polyethylene glycol (PEG) stresses and greater PSII effective quantum yield under ozone and salt stresses. Furthermore, these transgenic plants exhibited significantly lower hydrogen peroxide level when tested under salt stress. These results demonstrate that an overexpressed level of MDAR properly confers enhanced tolerance against ozone, salt and PEG stress.  相似文献   

11.
Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing.  相似文献   

12.
13.
14.
15.
16.
17.
A tomato (Lycopersicon esculentum Mill.) monodehydroascorbate reductase gene (LeMDAR) was isolated. The LeMDAR–green fluorescence protein (GFP) fusion protein was targeted to chloroplast in Arabidopsis mesophyll protoplast. RNA and protein gel blot analyses confirmed that the sense‐ and antisense‐ LeMDAR were integrated into the tomato genome. The MDAR activities and the levels of reduced ascorbate (AsA) were markedly increased in sense transgenic lines and decreased in antisense transgenic lines compared with wild‐type (WT) plants. Under low and high temperature stresses, the sense transgenic plants showed lower level of hydrogen peroxide (H2O2), lower thiobarbituric acid reactive substance (TBARS) content, higher net photosynthetic rate (Pn), higher maximal photochemical efficiency of PSII (Fv/Fm) and fresh weight compared with WT plants. The oxidizable P700 decreased more obviously in WT and antisense plants than that in sense plants at chilling temperature under low irradiance. Furthermore, the sense transgenic plants exhibited significantly lower H2O2 level, higher ascorbate peroxidase (APX) activity, greater Pn and Fv/Fm under methyl viologen (MV)‐mediated oxidative stresses. These results indicated that overexpression of chloroplastic MDAR played an important role in alleviating photoinhibition of PSI and PSII and enhancing the tolerance to various abiotic stresses by elevating AsA level.  相似文献   

18.
Ascorbate (vitamin C) is a potent antioxidant protecting plants against oxidative damage imposed by environmental stresses such as ozone and drought. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) is one of the two important enzymes functioning in the regeneration of ascorbate (AsA). To examine the protective role of DHAR against oxidative stress, we developed transgenic tobacco plants overexpressing cytosolic DHAR gene from Arabidopsis thaliana . Incorporation of the transgene in the genome of tobacco plants was confirmed by polymerase chain reaction and Southern blot analysis, and its expression was confirmed by Northern and Western blot analyses. These transgenic plants exhibited 2.3–3.1 folds higher DHAR activity and 1.9–2.1 folds higher level of reduced AsA compared with non-transformed control plants. The transgenic plants showed maintained redox status of AsA and exhibited an enhanced tolerance to ozone, drought, salt, and polyethylene glycol stresses in terms of higher net photosynthesis. In this study, we report for the first time that the elevation of AsA level by targeting DHAR overexpression in cytosol properly provides a significantly enhanced oxidative stress tolerance imposed by drought and salt.  相似文献   

19.
20.
Monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) is a key enzyme of the ascorbate (AsA)-glutathione cycle that maintains reduced pools of AsA and serves as an important antioxidative enzyme. Previously, we have cloned MDHAR cDNA from acerola (Malpighia glabra), a plant that accumulates abundant amount of AsA. In this study, MDHAR cDNA from acerola was introduced into tobacco plants using an Agrobacterium-mediated gene delivery system. Transgenic tobacco plants accumulated greater amounts of AsA and showed higher MDHAR activity than the control plants. Lipid peroxidation and chlorophyll degradation, which were stimulated in control plants, were restrained in transgenic plants subjected to salt stress. These results indicate that overexpression of acerola MDHAR imparts greater tolerance to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号