首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dechlorinating and genotoxicity-removing activities of nitrifying fluidized-bed reactor biomass towards chlorinated organic compounds in water were shown at level below 1 ppm. The removal rates of adsorbable organic halogens were 200 μg Cl (g VS day)−1 for chlorinated humic ground water and 50 μyg Cl (g VS day)−1 for chlorinated lake water when studied in batch mode. In a sequenced batch mode the removal rates μg Cl (g VS day)−1] were 2000 from chlorohumus, 1400–1800 from chlorophenols in chlorinated ground water, and 430–720 from chlorohumus in chlorinated lake water. Genotoxicity was removed to a large extent (60%–80%) from the chlorinated waters upon incubation with nitrifying reactor biomass. 2,6-Di-, 2,4,6-tri and 2,3,4,6-tetrachlorophenols competed with chlorinated water organohalogens for dechlorination. The dechlorination of chlorophenols and chlorohumus required no ammonia and was not prevented by inhibitors of ammonia oxidation, nitrapyrin, parathion, sodium diethyldithiocarbamate, or allylthiourea. Electron microscopical inspection of the biomass showed the dominance of clusters of bacteria resembling known nitrifying species, Nitrosomonas, Nitrobacter, and Nitrosospira. This was supported by polymerase chain reaction amplification of the biomass DNA with four different primers, revealing the presence of 16S rDNA sequences assignable to the same species. The most intensive band obtained with the Nitroso4E primer was shown to be closely related to Nitrosomonas europaea by restriction analysis. Received: 27 March 1998 / Received revision: 30 July 1998 / Accepted: 31 July 1998  相似文献   

2.
This study deals with combining the biologi cal removal of organic halogens with the removal of nitrogen from bleached kraft pulp mill wastewater in fluidized-bed reactors under nitrifying and denitrifying conditions. Untreated and biotreated bleached kraft pulp mill wastewaters had no detrimental effect on nitrification or denitrification. The nitrifying biofilm reactor, pregrown on synthetic inorganic feed with ammonia, removed without a lag phase adsorbable organic halogens [7.2 mg Cl (g biomass volatile solids)−1day−1] from bleached kraft pulp mill wastewater and selected chlorophenols from synthetic wastewater. Electron microscopical examination of the biofilm showed that bacteria, morphologically similar to the nitrifying species Nitrosomonas or Nitrobacter, and Nitrosospira were dominant. The denitrifying fluidized-bed reactor, pregrown on nitrate and methanol, denitrified without a lag phase bleached kraft pulp mill wastewater. Under denitrifying conditions, 35% of the total organic carbon content of untreated bleached kraft pulp mill waste water was removed. The reducing power delivered by untreated bleached kraft pulp mill wastewater for denitrification was 2 mmol electrons/mmol carbon mineralized. Dechlorination under denitrifying conditions was negligible. Received: 21 November 1996 / Received revision: 27 January 1997 / Accepted: 1 February 1997  相似文献   

3.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

4.
[背景]随着工农业的发展,污水排放导致的氨氮超标逐渐成为水体污染的重要因素,脱氮已成为人们研究的重点.目前脱氮方法主要集中于硝化细菌的硝化作用,其将氨氮转化为硝酸盐氮,从而减少水体中氨氮的污染.由于工业废水和农业污水中的有机物含量较高,而且异养硝化细菌具有生长较快等优势,因此对异养菌的研究多于自养菌.然而现有的异养硝化...  相似文献   

5.
Spatial changes of small nanoplankton (2–10 μm) were investigated in relation to sea-ice conditions, hydrography and receding ice processes in the Ross Sea (Antarctica) during spring 1994. Abundance and biomass of heterotrophic and autotrophic nanoplankton, as well as bacterioplankton, were determined along a south-north transect from the open waters polynya towards the pack ice. Autotrophic and heterotrophic nanoplankton biomass ranged from 758 to 4570 mgC m−2 and from 3 to 387 mgC m−2, respectively. Heterotrophic nanoplankton accounted, on average, for about 9% of the total (i.e. autotrophic plus heterotrophic) nanoplankton biomass. The size structure of both auto- and heterotrophic nanoplankton in the Ross Sea continental shelf receding ice edge was different from that of nanoplankton associated with the shelf break and open Antarctic ice-edge area. Generally, the highest heterotrophic biomass was found in the pack-ice zone on the continental shelf, while the highest heterotrophic contribution to the total nanoplankton biomass (up to 25%) was encountered at the shelf break where phytoplankton was largely dominated by 2- to 3-μm-size cells. Accepted: 2 May 1999  相似文献   

6.
In order to provide a better understanding of the dynamics of phytoplankton in the coastal regions of high latitudes, a study was carried out to estimate the dynamics of carbon biomass of autotrophic and heterotrophic algal groups over the austral spring-summer 1997/1998 period. At a fixed station located in the central basin (Paso Ancho) of the Straits of Magellan (53°S), surface water samples were collected at least once a week from September 1997 (early spring) to March 1998 (late summer). Quantitative analysis of biomass of phytoplankton was estimated from geometric volumes, using non-linear equations, and converted to biomass. The pattern of chlorophyll a showed a strong temporal variability, with maximum values (mean 2.8 mg m−3) at the austral spring phytoplankton increase or bloom (October/November) and minimum values during early spring (September: <0.5 mg m−3) and summer (January/March: 0.5–1.0 mg m−3). During the spring bloom, diatoms made up to 90% of the total phytoplankton carbon (0.01–189 μg l−1), followed by a maximum of thecate dinoflagellates (0.08–34 μg l−1), and sporadic high biomass of phytoflagellates during summer. Heterotrophic algal groups such as Gymnodinium and Gyrodinium spp. dominated (70%, in the 5- to 25-μm size range) shortly before the main diatom bloom, and small peaks were observed within spring and early summer periods (0–0.4 μg l−1). Phytoflagellates dominated earlier (spring) with higher carbon biomass (8 μg l−1) and post-bloom periods (summer) when carbon biomass ranged between 1 and 4 μg l−1. Accepted: 6 September 2000  相似文献   

7.
Zooplankton biomass (as dry weight), respiration and ammonia excretion were studied in three different size classes (200–500, 500–1000 and >1000 μm) in the Bransfield Strait during December 1991. Average mesozooplankton biomass was 86.45 ± 56.74 mg · dry weight · m−2, which is in the lower range of the values cited in the literature for polar waters. Higher biomass was observed in the Weddell water. The small size fraction accounted for about 50% of total biomass while the largest one represented 35%. Rather high metabolic rates were found, irrespective of whether the organisms were incubated in the presence of food. No significant differences were observed in mass specific respiration and ammonia excretion rates between different temperatures of incubation (0.2–2.3°C) and between the size classes studied. Because of the very low biomass values observed, the metabolic requirements of mesozooplankton during December represented a small fraction of the primary production. Accepted: 5 September 1998  相似文献   

8.
Complete granulation of nitrifying sludge was achieved in a sequencing batch reactor. For the granular sludge, batch experiments were conducted to characterize the kinetic features of ammonia oxidizers (AOB) and nitrite oxidizers (NOB) in the granules using the respirometric method. A two-step nitrification model was established to determine the kinetic parameters of both AOB and NOB. In addition to nitrification reactions, the new model also took into account biomass maintenance and mass transfer through the granules. The yield coefficient, maximum specific growth rate, and affinity constant for ammonium for AOB were 0.21 g chemical oxygen demand (COD) g−1 N, 0.09 h−1, and 9.1 mg N L−1, respectively, whereas the corresponding values for NOB were 0.05 g COD g−1 N, 0.11 h−1, and 4.85 mg N L−1, respectively. The model developed in this study performed well in simulating the oxygen uptake rate and nitrogen conversion kinetics and in predicting the oxygen consumption of the AOB and NOB in aerobic granules.  相似文献   

9.
The growth, biofiltering efficiency and uptake rates of Ulva clathrata were studied in a series of outdoor tanks, receiving waste water directly from a shrimp (Litopenaeus vannamei) aquaculture pond, under constant aeration and two different water regimes: (1) continuous flow, with 1 volume exchange a day (VE day-1) and (2) static regime, with 1 VE after 4 days. Water temperature, salinity, pH, dissolved inorganic nitrogen (DIN), phosphate (PO4), chlorophyll-a (chl-a), total suspended solids (TSS), macroalgal biomass (fresh weight) and tissue nutrient assimilation were monitored over 12 days. Ulva clathrata was highly efficient in removing the main inorganic nutrients from effluent water, stripping 70–82% of the total ammonium nitrogen (TAN) and 50% PO4 within 15 h. Reductions in control tanks were much lower (Tukey HSD, P < 0.05). After 3 days, the mean uptake rates by the seaweed biomass under continuous flow were 3.09 mg DIN g DW day−1 (383 mg DIN m−2 day−1) and 0.13 mg PO4 g DW day−1 (99 mg PO4 m−2 day−1), being significantly higher than in the static regime (Tukey HSD, P < 0.05). The chl-a decreased in seaweed tanks, suggesting that U. clathrata inhibited phytoplankton growth. Correlations between the cumulative values of DIN removed from the water and total nitrogen assimilated into the seaweed biomass (r = 0.7 and 0.8, P < 0.05), suggest that nutrient removal by U. clathrata dominated over other processes such as phytoplankton and bacterial assimilation, ammonia volatilization and nutrient precipitation.  相似文献   

10.
This paper describes both qualitative and quantitative aspects of simultaneous autotrophic nitrification and heterotrophic denitrification by, respectively, the nitrifierNitrisomonas europaea and either of the denitrifiersPseudomonas denitrificans orParacoccus denitrificans co-immobilized in double-layer gel beads. The system is based on the establishment of well-defined oxic and anoxic zones within the cell supports and on physical separation of the nitrifying and denitrifying populations. Nitrification and denitrification rates were obtained from measured bulk concentrations and head-space analysis. The latter analyses showed that ammonia was primarily converted into molecular nitrogen. Nitrous oxide was not detected. High nitrogen removal rates (up to 5.1 mmol N m–3 gel s–1) were achieved in continuous reactors under aerobic conditions. The overall rate of nitrogen removal was controlled by the nitrifying step. The approach followed is, in principle, also suitable to the coupling of other oxidative and reductive bioprocesses having complementary metabolic routes. Two-stage bioconversion processes can be thus conducted as if single-staged, which results in more compact reactor systems.  相似文献   

11.
Physiological effects of exposure to silver (AgCln n−1; 250 μg Ag l−1 or 1000 μg Ag l−1) in seawater fish were investigated using adult starry flounders. While all fish survived up to 10 days in 250 μg Ag l−1, flounders started to die after day 4 in 1000 μg l−1. Dose-dependent increases in plasma and hepatic silver concentrations showed that silver was available for uptake. There were minimal negative effects on hematological parameters, acid-base status, and blood gases. Plasma ammonia showed a pronounced (three- to four-fold), but transient increase in flounders exposed to either 250 μg Ag l−1 or 1000 μg Ag l−1. Whole body ammonia and acid equivalent efflux measurements indicated that ammonia retention was due to a combination of stimulated production and inhibited excretion. In the 1000-μg Ag l−1 group there was a similar transient increase in plasma [magnesium], which was restored by day 4. In contrast, plasma chloride and sodium levels increased gradually towards the point when fish began to die. At 250 μg Ag l−1, the Na+/K+-ATPase activity of the intestine was unaffected but there was a two-fold increase in branchial Na+/K+-ATPase activity. The latter effect was interpreted as compensation for an elevated chloride and sodium load. The increases in plasma chloride and sodium concentrations were accompanied by a marked suppression of drinking, thereby indicating that acute silver toxicity was likely caused by a combination of elevated electrolyte concentrations and dehydration. Accepted: 9 June 1999  相似文献   

12.
Studies on the chemical and biological properties of annual pack ice at a coastal station in Terra Nova Bay (74°41.72′S, 164°11.63′E) were carried out during austral spring at 3-day intervals from 5 November to 1 December 1997. Temporal changes of nutrient concentrations, algal biomasses, taxonomic composition, photosynthetic pigment spectra and P–E relationships were studied. Quantity, composition and degradation rates of organic matter in the intact sea ice were also investigated. In addition, microcosm experiments were carried out to evaluate photosynthetic and photo-acclimation processes of the sympagic flora in relation to different light regimes. High concentrations of ammonia were measured in four ice-cores (weighted mean values of the cores ranged from 4.3 ± 1.9 μM to 7.2 ± 3.4 μM), whereas nitrate and phosphate displayed high concentrations (up to 35.9 μM and 7.6 μM, respectively) only in the bottom layer (135–145 cm depth). Particulate carbohydrate and protein concentrations in the intact sea ice ranged from 0.5 to 2.3 mg l−1 and 0.2 to 2.0 mg l−1, respectively, displaying a notable accumulation of organic matter in the bottom colored layer, where bacterial enzymatic activities also reached the highest values. Aminopeptidase activity was extremely high (up to 19.7 μM l−1 h−1 ± 0.05 in the bottom layer), suggesting a rapid turnover rate of nitrogen–enriched organic compounds (e.g. proteins). By contrast, bacterial secondary production was low, suggesting that only a very small fraction of mobilized organic matter was converted into bacterial biomass (<0.01‰). The sympagic autotrophic biomass (in terms of chlorophaeopigments) of the bottom layer was high, increasing during the sampling period from 680 to 2480 μg l−1. Analyses of pigments performed by HPLC, as well as microscope observations, indicated that diatoms dominated bottom communities. The most important species were Amphiprora sp. and Nitschia cfr. stellata. Bottom sympagic communities showed an average P B max of 0.12 mgC mg Chl−1 and low photoadaptation index (E k=18 μE m−2 s−1, E m=65 μE m−2 s−1). Results of the microcosm experiment also indicated that communities were photo-oxidized when irradiance exceeded 100 μE m−2 s−1. This result suggests that micro- autotrophs inhabiting sea ice might have a minor role in the pelagic algal blooms. Accepted: 4 August 1999  相似文献   

13.
This study investigates the dynamics of phytoplankton communities and nitrogen uptake in the Indian sector of the Southern Ocean during spring and summer. The study area is oligotrophic (Chl a stocks <50 mg m−2); nevertheless, a large spatial variation of phytoplankton biomass and community structure was observed. During both seasons the phytoplankton community in the seasonal ice zone showed higher biomasses and was mainly composed of large diatom cells. However, in the permanently open ocean zone the community had low biomass and was chiefly composed of nano- and picoflagellates. In the polar front zone, although biomass was higher, the community structure was similar to the open ocean zone. The results suggest that the variation in phytoplankton community structure on a larger scale resonates with gradients in water column stability and nutrient distribution. However, significant changes in biomass and nutrient stocks but little change in community structure were observed. Absolute nitrogen uptake rates were generally low, but their seasonal variations were highly significant. During spring the communities displayed high specific nitrate uptake (mean rate = 0.0048 h−1), and diatoms (in the seasonal ice zone) as well as nano- and picoflagellates (in the permanently open ocean zone and polar front zone) were mainly based on new production (mean ƒ-ratio = 0.69). The transition to summer was accompanied by a significant reduction in nitrate uptake rate (0.0048 h−1 → 0.0011 h−1) and a shift from predominantly new to regenerated production (ƒ-ratio 0.69 → 0.39). Ammonium played a major role in the seasonal dynamics of phytoplankton nutrition. The results emphasize that, despite a large contrast in community structure, the seasonal dynamics of the nitrogen uptake regime and phytoplankton community structure in all three subsystems were similar. Additionally, this study supports our previous conclusion that the seasonal shift in nitrogen uptake regime can occur with, as well as without, marked changes in community structure. Received: 2 December 1997 / Accepted: 20 April 1998  相似文献   

14.
Towards a high-yield bioconversion of ferulic acid to vanillin   总被引:13,自引:2,他引:11  
Natural vanillin is of high interest in the flavor market. Microbial routes to vanillin have so far not been economical as the medium concentrations achieved have been well below 1 g l−1. We have now screened microbial isolates from nature and known strains for their ability to convert eugenol or ferulic acid into vanillin. Ferulic acid, in contrast to the rather toxic eugenol, was found to be an excellent precursor for the conversion to vanillin, as doses of several g l−1 could be fed. One of the isolated microbes, later identified as Pseudomonas putida, very efficiently converted ferulic acid to vanillic acid. As vanillin was oxidized faster than ferulic acid, accumulation of vanillin as an intermediate was not observed. A completely different metabolic flux was observed with Streptomyces setonii. During the metabolism of ferulic acid, this strain accumulated vanillic acid only to a level of around 200 mg l−1 and then started to accumulate vanillin as the principal metabolic overflow product. In shake-flask experiments, vanillin concentrations of up to 6.4 g l−1 were achieved with a molar yield of 68%. This high level now forms the basis for an economical microbial production of vanillin that can be used for flavoring purposes. Received: 15 October 1998 / Received revision: 13 January 1999 / Accepted: 18 January 1999  相似文献   

15.
The change of dilution rate (D) on both Methylophilus methylotrophus NCIMB11348 and Methylobacterium sp. RXM CCMI908 growing in trimethylamine (TMA) chemostat cultures was studied in order to assess their ability to remove odours in fish processing plants. M. methylotrophus NCIMB11348 was grown at dilution rates of 0.012–0.084 h−1 and the biomass level slightly increased up to values of D around 0.07 h−1. The maximum cell production rate was obtained at 0.07 h−1 corresponding to a maximum conversion of carbon into cell mass (35%). The highest rate of TMA consumption was 3.04 mM h−1 occurring at D=0.076 h−1. Methylobacterium sp. RXM CCMI908 was grown under similar conditions. The biomass increased in a more steep manner up to values of D around 0.06 h−1. The maximum cell production rate (0.058 g l−1h−1) was obtained in the region close to 0.06 h−1 where a maximum conversion of the carbon into cell mass (40%) was observed. The maximum TMA consumption was 2.33 mM h−1 at D=0.075 h−1. The flux of carbon from TMA towards cell synthesis and carbon dioxide in both strains indicates that the cell is not excreting products but directing most of the carbon source to growth. Carbon recovery levels of approximately 100% show that the cultures are carbon-limited. Values for theoretical maximum yields and maintenance coefficients are presented along with a kinetic assessment based on the determination of the substrate saturation constant and maximum growth rate for each organism. Received: 25 February 1999 / Received revision: 14 May 1999 / Accepted: 17 May 1999  相似文献   

16.
Maltose and sucrose were efficient carbon sources for the production of curdlan by a strain of Agrobacterium sp. A two-step, fed-batch operation was designed in which biomass was first produced, followed by curdlan production which was stimulated by nitrogen limitation. There exists an optimal timing for nitrogen limitation for curdlan production in the two-step, fed-batch operation. Maximum curdlan production (60 g L−1) was obtained from sucrose with a productivity of 0.2 g L−1 h−1 when nitrogen was limited at a cell concentration of 16.0 g L−1. It was also noted that the curdlan yield from sucrose was as high as 0.45 g curdlan g−1 sucrose, and the highest specific production rate was 1.0 g curdlan g−1 cells h−1 right after nitrogen limitation. Of particular importance was the use of molasses as a cheap carbon source to produce curdlan in the two-step, fed-batch cultivation. As high as 42 g L−1 of curdlan with a yield of 0.35 g curdlan g−1 total sugar was obtained after 120 h of fed-batch cultivation. Received 20 August 1996/ Accepted in revised form 26 November 1996  相似文献   

17.
Nitrifying bacteria, cyanobacteria, and algae are important microorganisms in open pond wastewater treatment systems. Nitrification involving the sequential oxidation of ammonia to nitrite and nitrate, mainly due to autotrophic nitrifying bacteria, is essential to biological nitrogen removal in wastewater and global nitrogen cycling. A continuous flow autotrophic bioreactor was initially designed for nitrifying bacterial growth only. In the presence of cyanobacteria and algae, we monitored both the microbial activity by measuring specific oxygen production rate (SOPR) for microalgae and cyanobacteria and specific oxygen uptake rate (SOUR) for nitrifying bacteria. The growth of cyanobacteria and algae inhibited the maximum nitrification rate by a factor of 4 although the ammonium nitrogen fed to the reactor was almost completely removed. Terminal restriction fragment length polymorphism (T‐RFLP) analysis indicated that the community structures of nitrifying bacteria remained unchanged, containing the dominant Nitrosospira, Nitrospira, and Nitrobacter species. PCR amplification coupled with cloning and sequencing analysis resulted in identifying Chlorella emersonii and an uncultured cyanobacterium as the dominant species in the autotrophic bioreactor. Notwithstanding their fast growth rate and their toxicity to nitrifiers, microalgae and cyanobacteria were more easily lost in effluent than nitrifying bacteria because of their poor settling characteristics. The microorganisms were able to grow together in the bioreactor with constant individual biomass fractions because of the uncoupled solids retention times for algae/cyanobacteria and nitrifiers. The results indicate that compared to conventional wastewater treatment systems, longer solids retention times (e.g., by a factor of 4) should be considered in phototrophic bioreactors for complete nitrification and nitrogen removal. Biotechnol. Bioeng. 2010;107: 1004–1011. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
The contribution of ammonia-oxidizing archaea (AOA) to nitrogen removal in wastewater treatment plants (WWTPs) remains unknown. This study investigated the abundance of archaeal (AOA) and bacterial (ammonia-oxidizing bacteria (AOB)) amoA genes in eight of Bangkok’s municipal WWTPs. AOA amoA genes (3.28 × 107 ± 1.74 × 107–2.23 × 1011 ± 1.92 × 1011 copies l−1 sludge) outnumbered AOB amoA genes in most of the WWTPs even though the plants’ treatment processes, influent and effluent characteristics, removal efficiencies, and operation varied. An estimation of the ammonia-oxidizing activity of AOA and AOB suggests that AOA involved in autotrophic ammonia oxidation in the WWTPs. Statistical analysis shows that the numbers of AOA amoA genes correlated negatively to the ammonium levels in effluent wastewater, while no correlation was found between the AOA amoA gene numbers and the oxygen concentrations in aeration tanks. An analysis of the AOB sequences shows that AOB found in the WWTPs limited to only two AOB clusters which exhibit high or moderate affinity to ammonia. In contrast to AOB, AOA sequences of various clusters were retrieved, and they were previously recovered from a variety of environments, such as thermal and marine environments.  相似文献   

19.
In acetate-limited chemostat cultures of Acinetobacter johnsonii 210A at a dilution rate of 0.1 h−1 the polyphosphate content of the cells increased from 13% to 24% of the biomass dry weight by glucose (100 mM), which was only oxidized to gluconic acid. At this dilution rate, only about 17% of the energy from glucose oxidation was calculated to be used for polyphosphate synthesis, the remaining 83% being used for biomass formation. Suspensions of non-growing, phosphate-deficient cells had a six- to tenfold increased uptake rate of phosphate and accumulated polyphosphate aerobically up to 53% of the biomass dry weight when supplied with only orthophosphate and Mg2+. The initial polyphosphate synthesis rate was 98 ± 17 nmol phosphate min−1 mg protein−1. Intracellular poly-β-hydroxybutyrate and lipids served as energy sources for the active uptake of phosphate and its subsequent sequestration to polyphosphate. The H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide caused low ATP levels and a severe inhibition of polyphosphate formation, suggesting the involvement of polyphosphate kinase in polyphosphate synthesis. It is concluded that, in A. johnsonii 210A, (i) polyphosphate is accumulated as the energy supply is in excess of that required for biosynthesis, (ii) not only intracellular poly-β-hydroxybutyrate but also neutral lipids can serve as an energy source for polyphosphate-kinase-mediated polyphosphate formation, (iii) phosphate-deficient cells may accumulate as much polyphosphate as activated sludges and recombinants of Escherichia coli designed for polyphosphate accumulation. Received: 23 October 1998 / Received revision: 18 January 1999 / Accepted: 22 January 1999  相似文献   

20.
With the goal of developing a defined medium for the production of desiccation-tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus, we evaluated the impact of various media components such as amino acids, carbohydrates, trace metals and vitamins on hyphal growth and sporulation of P. fumosoroseus cultures and on the freeze-drying tolerance of blastospores produced under these conditions. A comparison of 13 amino acids as sole nitrogen sources showed that glutamate, aspartate, glycine and arginine supported biomass accumulations (12–16 mg ml−1) and blastospore yields (6–11 × 108 blastospores ml−1) comparable to our standard production medium which contains casamino acids as the nitrogen source. Using glutamate as the sole nitrogen source, tests with various carbohydrates showed that P. fumosoroseus grew best on glucose (18.8 mg biomass ml−1) but produced similar blastospore concentrations (7.3–11.0 × 108) when grown with glucose, glycerol, fructose or sucrose. P. fumosoroseus cultures grown in media with sodium citrate or galactose as the sole carbohydrate produced lower blastospore concentrations but more-desiccation-tolerant spores. Zinc was the only trace metal tested that was required for optimal growth and sporulation. In a defined medium with glutamate as the nitrogen source, vitamins were unnecessary for P. fumosoroseus growth or sporulation. When blastospores were freeze-dried in the absence of a suspension medium, residual glucose (>2.5% w/v) was required for enhanced spore survival. Thus, a defined medium containing basal salts, glucose, glutamate and zinc can be used to produce optimal concentrations of desiccation-tolerant blastospores of P. fumosoroseus. Received 27 October 1998/ Accepted in revised form 06 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号