首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of vitamin B2 and its coenzyme forms by glycogen phosphorylase b was studied by sedimentation velocity and sedimentation equilibrium methods. Microscopic dissociation constants for complexes of the enzyme with riboflavin, FMN and FAD were found to be 12.5, 6.8 and 18.1 microM, respectively (0.1 M KCl, pH 6.8, 20 degrees C). We revealed also that glucose 1-phosphate, glycogen and AMP decreased the affinity of the enzyme for FMN.  相似文献   

2.
The kinetic analysis of the glycogen chain growth reaction catalyzed by glycogen phosphorylase b from rabbit skeletal muscle has been carried out over a wide range of concentrations of AMP under the saturation of the enzyme by glycogen. The applicability of 23 different variants of the kinetic model involving the interaction of AMP and glucose 1-phosphate binding sites in the dimeric enzyme molecule is considered. A kinetic model has been proposed which assumes: (i) the independent binding of one molecule of glucose 1-phosphate in the catalytic site on the one hand, and AMP in both allosteric effector sites and both nucleoside inhibitor sites of the dimeric enzyme molecule bound by glycogen on the other hand; (ii) the binding of AMP in one of the allosteric effector sites results in an increase in the affinity of other allosteric effector site to AMP; (iii) the independent binding of AMP to the nucleoside inhibitor sites of the dimeric enzyme molecule; (iv) the exclusive binding of the second molecule of glucose 1-phosphate in the catalytic site of glycogen phosphorylase b containing two molecules of AMP occupying both allosteric effector sites; and (v) the catalytic act occurs exclusively in the complex of the enzyme with glycogen, two molecules of AMP occupying both allosteric effector sites, and two molecules of glucose 1-phosphate occupying both catalytic sites.  相似文献   

3.
Two interconvertible forms of glycogen synthase and glycogen phosphorylase, one active (a) or the other less active (b), were predominantly present in a thermosensitive adenylate-cyclase-deficient mutant that had been preincubated at the restrictive temperature of 35 degrees C, either in the presence or in the absence of glucose. Glycogen phosphorylase was at least 20-fold less active after incubation of the cells in the presence of glucose, but this residual activity had kinetic properties identical to those of the active form of enzyme, obtained after incubation in the absence of glucose; this suggests that the b form might be completely inactive and that the low activity measured after glucose treatment must be attributed to a residual amount of phosphorylase a. By contrast, the kinetic properties of the two forms of glycogen synthase were very different. When measured in the absence of glucose 6-phosphate, the two forms of enzyme had a similar affinity for UDP-Glc but differed essentially by their Vmax. Glucose 6-phosphate had no effect on synthase a, but increased both Vmax and Km of synthase b; these effects, however, were in great part counteracted by sulfate and by inorganic phosphate, the latter also having the property of increasing the Km of the a form, without affecting Vmax. It was estimated that at physiological concentrations of substrates and effectors, synthase a was about 20-fold more active than synthase b. When an extract of cells that had been preincubated in the absence of glucose was gel-filtered and then incubated at 30 degrees C, phosphorylase was progressively fully inactivated and synthase was partially activated; these reactions were severalfold faster and, in the case of glycogen synthase, more complete in the presence of 10 mM glucose 6-phosphate. When a gel-filtered extract of cells that had been preincubated in the presence of glucose was incubated at 30 degrees C in the presence of ATP-Mg and EGTA, phosphorylase became activated and synthase was inactivated; the first of these two reactions was severalfold stimulated by micromolar concentrations of Ca2+, whereas both reactions were completely inhibited by 10 mM glucose 6-phosphate and only slightly and irregularly stimulated by cyclic AMP.  相似文献   

4.
The dependence of the phosphorylation reaction rate on the glucose-1-phosphate concentration is investigated in Dasyatis pastinaca in a wide temperature range (5-45 degrees C). In the temperature range of 20-40 degrees C nH is equal to 1.3-1.7. The disturbance of allosteric interactions of active sites with the loss of kinetic substrate cooperativity is observed at 45 degrees C. v(S)-Dependence with the intermediate plateau is obtained at 5 degrees C and high concentration of glycogen phosphorylase B (EC 2.4.1.1), that is explained by the formation of inactive tetramer. Studies in activation of glycogen phosphorylase B of Dasyatis pastinaca under the effect of glycogen phosphorylase (EC 2.7.1.38) kinase have revealed temperature-dependent changes in the pattern of kinetic curve. An assumption is advanced that the presence of the association-dissociation equilibrium in oligomeric forms of glycogen phosphorylase B with different enzymic activity and the effect of the temperature-dependent conformation state of this enzyme on the kinase reaction rate plays an essential role in regulation of glycogenolysis in the muscular tissue of ectothermal animals.  相似文献   

5.
The binding to glycogen phosphorylase b of glucose 6-phosphate and inorganic phosphate (respectively allosteric inhibitor and substrate/activator of the enzyme) were studied in the crystal at 0.3 nm (3A) resolution. Glucose 6-phosphate binds in the alpha-configuration at a site that is close to the AMP allosteric effector site at the subunit-subunit interface and promotes several conformational changes. The phosphate-binding site of the enzyme for glucose 6-phosphate involves contacts to two cationic residues, Arg-309 and Lys-247. This site is also occupied in the inorganic-phosphate-binding studies and is therefore identified as a high-affinity phosphate-binding site. It is distinct from the weaker phosphate-binding site of the enzyme for AMP, which is 0.27 nm (2.7A) away. The glucose moiety of glucose 6-phosphate and the adenosine moiety of AMP do not overlap. The results provide a structural explanation for the kinetic observations that glucose 6-phosphate inhibition of AMP activation of phosphorylase b is partially competitive and highly co-operative. The results suggest that the transmission of allosteric conformational changes involves an increase in affinity at phosphate-binding sites and relative movements of alpha-helices. In order to study glucose 6-phosphate and phosphate binding it was necessary to cross-link the crystals. The use of dimethyl malondi-imidate as a new cross-linking reagent in protein crystallography is discussed.  相似文献   

6.
Large-scale functionally significant changes in the intramolecular dynamics of muscle glycogen phosphorylase b (EC 2.4.1.1) in solution upon ligand binding, transition from dimeric to tetrameric form, temperature denaturation and aggregation were registered at room temperature using the tryptophan phosphorescence technique. It was shown that binding of glucose-1-phosphate (substrate, 0.25-4 mM) and glucose (competitive inhibitor, 0.5-8 mM) to the active site and temperature-induced protein aggregation decrease large-scale structural fluctuations of the protein matrix at the level of domains and subunits; whereas the transition of glycogen phosphorylase b to tetrameric form (R-conformation) leads to a dramatic increase in the structural flexibility of the peripheral parts of the protein globule.  相似文献   

7.
Biorn AC  Graves DJ 《Biochemistry》2001,40(17):5181-5189
Glycogen phosphorylase is a muscle enzyme which metabolizes glycogen, producing glucose-1-phosphate, which can be used for the production of ATP. Phosphorylase activity is regulated by phosphorylation/dephosphorylation, and by the allosteric binding of numerous effectors. In this work, we have studied 10 site-directed mutants of glycogen phosphorylase (GP) in its amino-terminal regulatory region to characterize any changes that the mutations may have made on its structure or function. All of the GP mutants had normal levels of activity in the presence of the allosteric activator AMP. Some of the mutants were observed to have altered AMP-binding characteristics, however. R16A and R16E were activated at very low AMP concentration and crystallized at low temperature, like the phosphorylated form of GP, phosphorylase a, and unlike the dephospho-form, phosphorylase b. This indicates that even without phosphorylation, the structures of these mutants are more like phosphorylase a than phosphorylase b. These mutants were also very poorly phosphorylated in the presence of the inhibitor glucose, while phosphorylase b was phosphorylated normally with this inhibitor present. In contrast to R16A and R16E, four other mutants behaved like phosphorylase b after phosphorylation. R69E was only partially activated by phosphorylation, and I13G, R43E, and R43E/R69E were completely inactive after phosphorylation. We propose a model for the many functions of the amino terminus to explain the many varied effects of these mutations.  相似文献   

8.
Interaction of flavin mononucleotide (FMN) with dimeric and tetrameric forms of rabbit muscle glycogen phosphorylase beta has been studied under the conditions when allosteric activator binding sites are saturated by AMP (1 mM AMP; pH 6.8; 17 degrees C). Simultaneous use of schlieren optical system and photoelectric scanning absorption optical system of analytical ultracentrifuge Spinco, model E, makes it possible to register the oligomeric state of the enzyme and calculate the degree of saturation of individual oligomeric enzyme forms by FMN. The apparent association constant for the equilibrium dimer in equilibrium with tetramer decreased with increasing FMN concentration. The microscopic dissociation constants for the complexes of dimeric and tetrameric forms of glycogen phosphorylase beta with FMN have been found to be equal to 10 and 79 microM, respectively.  相似文献   

9.
Glycogen phosphorylases catalyze the breakdown of glycogen to glucose-1-phosphate, which enters glycolysis to fulfill the energetic requirements of the organism. Maintaining control of blood glucose levels is critical in minimizing the debilitating effects of diabetes, making liver glycogen phosphorylase a potential therapeutic target. To support inhibitor design, we determined the crystal structures of the active and inactive forms of human liver glycogen phosphorylase a. During activation, forty residues of the catalytic site undergo order/disorder transitions, changes in secondary structure, or packing to reorganize the catalytic site for substrate binding and catalysis. Knowing the inactive and active conformations of the liver enzyme and how each differs from its counterpart in muscle phosphorylase provides the basis for designing inhibitors that bind preferentially to the inactive conformation of the liver isozyme.  相似文献   

10.
11.
Glycogen phosphorylase in cell-free extracts of Neurospora crassa is activated 10- to 15-fold by incubation with MgATP2?. When the MgATP2? is removed, the active form (a form) reverts to the inactive form (b form). The inactivation requires Mg2+ and is inhibited by NaF. The results confirm that Neurospora crassa glycogen phosphorylase exists in two interconvertible forms and strongly suggests that the interconversion is catalyzed by a kinase and phosphatase. The a form was partially purified. The enzyme has a molecular weight of 320,000. Uridine diphosphate glucose is a linear competitive inhibitor with respect to glucose-1-phosphate and a linear non-competitive inhibitor with respect to glycogen. Glucose-6-phosphate is a hyperbolic (partial) noncompetitive inhibitor with respect to all substrates in both directions. The b form of the enzyme in crude cell-free extracts is stimulated 2- to 3-fold by 5′-AMP. As the b form is purified, the 5′-AMP activation is diminished. The molecular weight of the partially purified “b” form was also 320,000.  相似文献   

12.
M Morange  H Buc 《Biochimie》1979,61(5-6):633-643
Glycogen phosphorylase b is converted to glycogen phosphorylase a, the covalently activated form of the enzyme, by phosphorylase kinase. Glc-6-P, which is an allosteric inhibitor of phosphorylase b, and glycogen, which is a substrate of this enzyme, are already known to have respectively an inhibiting and activating effect upon the rate of conversion from phosphorylase b to phosphorylase a by phosphorylase kinase. In the former case, this effect is due to the binding of glucose-6-phosphate to glycogen phosphorylase b. In order to investigate whether or not the rate of conversion of glycogen phosphorylase b to phosphorylase a depends on the conformational state of the b substrate, we have tested the action of the most specific effectors of glycogen phosphorylase b activity upon the rate of conversion from phosphorylase b to phosphorylase a at 0 degrees C and 22 degrees C : AMP and other strong activators, IMP and weak activators, Glc-6-P, glycogen. Glc-1-P and phosphate. AMP and strong activators have a very important inhibitory effect at low temperature, but not at room temperature, whereas the weak activators have always a very weak, if even existing, inhibitory effect at both temperatures. We confirmed the very strong inhibiting effect of Glc-6-P at both temperatures, and the strong activating effect of glycogen. We have shown that phosphate has a very strong inhibitory effect, whereas Glc-1-P has an activating effect only at room temperature and at non-physiological concentrations. The concomitant effects of substrates and nucleotides have also been studied. The observed effects of all these ligands may be either direct ones on phosphorylase kinase, or indirect ones, the ligand modifying the conformation of phosphorylase b and its interaction with phosphorylase kinase. Since we have no control experiments with a peptidic fragment of phosphorylase b, the interpretation of our results remains putative. However, the differential effects observed with different nucleotides are in agreement with the simple conformational scheme proposed earlier. Therefore, it is suggested that phosphorylase kinase recognizes differently the different conformations of glycogen phosphorylase b. In agreement with such an explanation, it is shown that the inhibiting effect of AMP is mediated by a slow isomerisation which has been previously ascribed to a quaternary conformational change of glycogen phosphorylase b. The results presented here (in particular, the important effect of glycogen and phosphate) are also discussed in correlation with the physiological role of the different ligands as regulatory signals in the in vivo situation where phosphorylase is inserted into the glycogen particle.  相似文献   

13.
FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b-FR258900 complex and refined it to 2.2 A resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45' (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy-phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site.  相似文献   

14.
Modification of pyridoxal-reconstituted phosphorylase b with two arginine-directed reagents, butanedione and [14C]phenylglyoxal, has been investigated and compared with the results obtained on the active and inactive conformations of the native enzyme; the reactivity of the various arginine residues has been directly described using autoradiography of chymotryptic maps derived from [14C]phenylglyoxal-labelled phosphorylase. In the native enzyme this method demonstrates that the same arginine residue (568) is reactive on both activated phosphorylase a and b, non-reactive on inactive forms of phosphorylase and protected by glucose 1-phosphate. Another residue is reactive, but its reactivity does not drastically depend upon phosphorylase conformation; it interacts with glucose 1-phosphate. In the pyridoxal-reconstituted phosphorylase, the residue Arg-568 is reactive. This reactivity does not correlated in a simple manner with the ionisation state of the coenzyme, since it is high when this group is either absent or in a dianionic form, and low when it is monoanionic. The reactivity of Arg-568 rather correlates with the quaternary structure of the enzyme. The protection offered by glucose 1-phosphate, pyrophosphate and phosphite on this pyridoxal-reconstituted phosphorylase also provides information about the relative disposition of the substrate, the coenzyme and this particular arginine residue.  相似文献   

15.
Crystallographic binding studies of various metabolites to phosphorylase b in the presence of 2 mm-IMP have been carried out at low resolution (8.7 Å) with three-dimensional data and at high resolution (3 å) with two-dimensional data. From correlation of peaks observed in difference Fourier syntheses based on these two sets of data, the following binding sites have been identified: (1) the “active” site to which the substrate, glucose 1-phosphate, and the substrate analogues, maltotriose and arsenate, bind and which is close to the subunit-subunit interface of the phosphorylase dimer; (2) the allosteric adenine-nucleotide binding site to which the allosteric activator AMP and the allosteric inhibitor ATP bind and which is very close to the active site; (3) the inhibitor binding site for glucose 6-phosphate, which is also close to the active site. Glucose 6-phosphate causes extensive conformational changes in the protein, which are the largest observed for all the metabolites studied so far; (4) a glycogen binding site on the surface of the molecule to which maltotriose binds. The distance over the surface of the phosphorylase molecule from this site to the active site is 50 to 60 Å; (5) a second glucose 1-phosphate binding site situated in the interior of the molecule. The significance of this site is not yet understood but its position in the centre of the molecule suggests that it may have a key role in the control and catalysis of phosphorylase.  相似文献   

16.
AMP-dependent activity of glycogen phosphorylase b is stimulated by the polymyxins A, B, D, and E. Kinetic studies indicate that these cyclic peptide antibiotics at low concentrations greatly enhance AMP-activation of the enzyme. The presence of polymyxins in the assay system leads to (a) partial desensitization of allosteric interactions toward AMP, (b) lowering of Km for the substrates glucose-1-phosphate and glycogen, and (c) reversal of the glucose-6-phosphate inhibition. in contrast to phosphorylase b, neither AMP-phosphorylase b′ system nor phosphorylase a (with or without AMP) is considerably activated by polymyxins.  相似文献   

17.
The interactions of rabbit muscle glycogen phosphorylase b with Eosin (2',4',5',7'-tetrabromofluorescein) was studied. Eosin was found to be an effective inhibitor of the enzyme. The inhibition constants for the dye were estimated to be approx. 36 and 60 microM with respect to AMP and glucose 1-phosphate respectively. The binding of Eosin to phosphorylase b is accompanied by a red-shift of about 12 nm in the dye absorption-spectrum maximum, indicating low-polarity binding sites on the enzyme molecule for the dye. The absorbance in the difference absorption maximum at 537 nm was utilized to follow the conjugation of phosphorylase b with Eosin. Scatchard plots of the titration data revealed the existence of at least two classes of binding sites on the protein molecule for Eosin, and the dissociation constants measured in Tris/HCl buffer, pH 7.0 (IO.091), were 7.7 and 41.7 microM respectively. The influence of the substrates and effectors on Eosin-enzymes complexes was used to study the ligand-phosphorylase b interactions. IMP displaced the dye completely from the enzyme, indicating that there are two IMP-binding sites per phosphorylase b monomer. AMP binding to the enzyme with respect to Eosin concentration is of two types: a non-competitive one for the high-affinity site for AMP and a competitive one for the low-affinity site for the activator. The effects of glucose 6-phosphate, ATP, Pi and glycerol 2-phosphate in the system are in according dance with a partially competitive model. Glucoes 1-phosphate and UDP-glucose appear to affect only the high-affinity site for Eosin, whereas glucose and glycogen have no effect on Eosin-phosphorylase b complexes. Our results suggest that Eosin can be used as an efficient optical probe for studying the phosphorylase b system.  相似文献   

18.
Water-soluble carbodiimide (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) and glycine ethyl ester (GEE) as a nucleophile were used to modify the essential carboxyl group of phosphorylases. The inactive b form of the muscle phosphorylase was modified faster than the active a form and potato phosphorylases. Use of N,N,N',N'-tetramethyl-ethylenediamine (TEMED)-HCl buffer system (pH 6.2) resulted in a remarkable difference from the previous results obtained with phosphate and beta-glycerophosphate buffer systems. That is, the substrate glucose 1-phosphate gave the best protection of the three phosphorylase activities. Glucose and glycogen were also effective to retard the inactivation of muscle phosphorylases, though glycogen was not effective for the potato enzyme. The EDC-GEE-modified phosphorylase b retained the affinity for AMP-Sepharose, though partially modified enzyme completely lost the homotropic cooperativity. Phosphorylase b was subjected to differential labeling with [14C]GEE. A labeled peptide was obtained after CNBr cleavage and peptic digestions, and corresponded to the catalytic site sequence surrounding the GEE-substituted Asp 661 and Glu 664. Either or both of these EDC-modified carboxyl residues may have an important role in the catalytic reaction.  相似文献   

19.
The binding of beta-glycerophosphate (glycerol-2-P) to glycogen phosphorylase b in the crystal has been studied by X-ray diffraction at 3 A resolution. Glycerol-2-P binds to the allosteric effector site in a position close to that of AMP, glucose-6-P, UDP-Glc, and phosphate. In this position, glycerol-2-P is stabilized through interactions of its phosphate moiety with the guanidinium groups of Arg 309 and Arg 310 which undergo conformational changes, and the hydroxyl group of Tyr 75, while the same residues and solvent are involved in van der Waals interactions with the remaining part of the molecule. Kinetic experiments indicate that glycerol-2-P partially competes with both the activator (AMP) and the inhibitor (glucose 6-phosphate) of phosphorylase b. A comparison of the positions of glycerol-2-P, AMP, glucose 6-phosphate, UDP-Glc, and Pi at the allosteric site is presented.  相似文献   

20.
It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号