首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Fluorescence in situ hybridisation (FISH) has become one of the major techniques in environmental microbiology. The original version of this technique often suffered from limited sensitivity due to low target copy number or target inaccessibility. In recent years there have been several developments to amend this problem by increasing signal intensity. This review summarises various approaches for signal amplification, focussing especially on two widely recognised varieties, tyramide signal amplification and multiply labelled polynucleotide probes. Furthermore, new applications for FISH are discussed, which arise from the increased sensitivity of the method.  相似文献   

3.
In situ hybridization (ISH) has proved to be an invaluable molecular tool in research and diagnosis to visualize nucleic acids in their cellular environment. However, its applicability can be limited by its restricted detection sensitivity. During the past 10 years, several strategies have been developed to improve the threshold levels of nucleic acid detection in situ by amplification of either target nucleic acid sequences before ISH (e.g., in situ PCR) or the detection signals after the hybridization procedures. Here we outline the principles of tyramide signal amplification using the catalyzed reporter deposition (CARD) technique, present practical suggestions to efficiently enhance the sensitivity of ISH with CARD, and discuss some applications and possible future directions of in situ nucleic acid detection using such an amplification strategy.  相似文献   

4.
 We report an optimized in situ hybridization (ISH) protocol with a rapid signal amplification procedure based on catalyzed reporter deposition (CARD) to increase the sensitivity of non-isotopic mRNA ISH on formaldehyde-fixed and paraffin-embedded tissue. The CARD method is based on the deposition of haptenized tyramide molecules in the vicinity of hybridized probes catalyzed by horseradish peroxidase. Commercially available and newly synthesized haptenized tyramides, including digoxigenin-, biotin-, di- and trinitrophenyl- as well as fluorescein-tyramide, were compared. The haptenized tyramides were visualized using peroxidase conjugated anti-hapten antibodies followed by the diaminobenzidine reaction. As a test system, we applied digoxigenin-labeled oligonucleotides to detect insulin and vasoactive intestinal polypeptide mRNA in pancreatic endocrine tumors and liver metastases. Our results indicate that specificity, sensitivity, and applicability of oligonucleotide mRNA ISH can be significantly improved by using chemically digoxigenin-labeled oligonucleotide probes and signal amplification by CARD. Furthermore, all tested tyramides provided approximately equal amplification efficiency. In conclusion, CARD signal amplification should further promote mRNA ISH studies on paraffin-embedded tissues and allow for multiple-target nucleic acid detection in situ. Accepted: 1 July 1998  相似文献   

5.
6.
A method is presented to conjugate horseradish peroxidase (HRP) to oligodeoxynucleotides for fluorescence in situ hybridization assays employing tyramide signal amplification (TSA). HRP is covalently bound to the oligonucleotide by thiol ether linkage and purified by high-performance liquid chromatography. With TSA detection, a single HRP-labeled oligonucleotide probe is sufficient for in situ detection of clustered DNA repeat sequences with a degree of repetition between 20 and 50. Accepted: 6 December 1999  相似文献   

7.
8.
 One hundred paraffin-embedded cervical biopsy specimens were tested for the presence of human papilloma virus (HPV) by in situ hybridization (ISH), and by direct and indirect in situ PCR (IS-PCR) in order to evaluate the efficiency of the different in situ methods in detecting HPV infection. ISH was performed using either commercial DNA probes or a cocktail of 5′-digoxigenin labeled oligoprimers. The same were used for ISH during indirect IS-PCR. To enhance the sensitivity of ISH several polymers, i.e., polyvinyl alcohol (PVA), polyethylene glycol, and polyvinylpyrrolidone were added to the alkaline phosphatase nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) reaction. Furthermore, tyramide signal amplification (TSA) was tried for signal amplification. Those samples treated with PVA during the NBT/BCIP reaction did not show any signal amplification whereas those treated with TSA exhibited a dramatic increase in sensitivity with usually acceptable signal to noise ratios. Our results show that, regarding sensitivity, ISH with subsequent signal amplification by TSA can be used as an almost equivalent alternative to the more cumbersome IS-PCR on routinely processed tissue specimens. When considering reproducibility, it is superior to IS-PCR. Accepted: 25 September 1998  相似文献   

9.
To increase the sensitivity of fluorescence in situ hybridization (FISH) for detection of low-abundance mRNAs, we performed FISH on cryostat sections of rat hypothalamus with biotin-labeled riboprobes to leptin receptor (ObRb) and amplified the signal by combining tyramide signal amplification (TSA) and Enzyme-Labeled Fluorescent alkaline phosphatase substrate (ELF) methods. First, TSA amplification was done with biotinylated tyramide. Second, streptavidin-alkaline phosphatase was followed by the ELF substrate, producing a bright green fluorescent reaction product. FISH signal for ObRb was undetectable when TSA or ELF methods were used alone, but intense ELF FISH signal was visible in hypothalamic neurons when the ELF protocol was preceded by TSA. The TSA-ELF was combined with FISH for pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) mRNAs by hybridizing brain sections in a cocktail containing digoxigenin-labeled riboprobes to NPY or POMC mRNA and biotin-labeled riboprobes to ObRb mRNA. Dioxigenin-labeled NPY or POMC mRNA hybrids were subsequently detected first with IgG-Cy3. Then biotin-labeled leptin receptor hybrids were detected with the TSA-ELF method. Combining the ELF and TSA amplification techniques enabled FISH detection of scarce leptin receptor mRNAs and permitted the identification of leptin receptor mRNA in cells that also express NPY and POMC gene products.  相似文献   

10.
Classical in situ hybridization (ISH) with biotinylated probes makes it possible to detect and localize human papillomavirus (HPV) nucleic acid sequences in cytological and histological materials. This method is however of limited value in the detection of a few copies of the virus. Moreover the specificity of such a technique is not always convincing when ISH signals are small and/or of low intensity. Recently, much attention has been focused on the utility of the in vitro polymerase chain reaction (PCR) and especially on PCR-single strand conformation polymorphism (SSCP) to amplify small amounts of viral DNA with accurate hybrid specificity. But the latter method requires nucleic acid extraction and tissue destruction. Thus, correlation between the PCR results and histological findings is not possible. Hence, the aim of our current study was to apply to HeLa cells and cervical formalin-fixed and paraffin-embedded biopsies, a novel procedure of ISH signal amplification, the catalyzed signal amplification (CSA). Such a procedure is based on the deposition of streptavidin-horseradish peroxidase catalyzing the deposition of biotinylated tyramide molecules on the location of the probed target. The biotin accumulation is then detected with streptavidin peroxidase and diaminobenzidine. The results were compared with those obtained by direct and indirect in situ PCR. The catalysed signal amplification successfully increased the sensitivity and efficiency of ISH for the detection of rare sequences in HPV infected cells and histological materials. Such a method was found simpler and faster than in situ PCR and tissue morphology was better preserved.  相似文献   

11.
Individual cyanobacterial cells are normally identified in environmental samples only on the basis of their pigmentation and morphology. However, these criteria are often insufficient for the differentiation of species. Here, a whole-cell hybridization technique is presented that uses horseradish peroxidase (HRP)-labeled, rRNA-targeted oligonucleotides for in situ identification of cyanobacteria. This indirect method, in which the probe-conferred enzyme has to be visualized in an additional step, was necessary since fluorescently monolabeled oligonucleotides were insufficient to overstain the autofluorescence of the target cells. Initially, a nonfluorescent detection assay was developed and successfully applied to cyanobacterial mats. Later, it was demonstrated that tyramide signal amplification (TSA) resulted in fluorescent signals far above the level of autofluorescence. Furthermore, TSA-based detection of HRP was more sensitive than that based on nonfluorescent substrates. Critical points of the assay, such as cell fixation and permeabilization, specificity, and sensitivity, were systematically investigated by using four oligonucleotides newly designed to target groups of cyanobacteria.  相似文献   

12.
13.
In situ hybridization (ISH) using nonradioactive probes enables mRNAs to be detected with improved cell resolution but compromised sensitivity compared to ISH with radiolabeled probes. To detect rare mRNAs, we optimized several parameters for ISH using digoxygenin (DIG)-labeled probes, and adapted tyramide signal amplification (TSA) in combination with alkaline phosphatase (AP)-based visualization. This method, which we term TSA-AP, achieves the high sensitivity normally associated with radioactive probes but with the cell resolution of chromogenic ISH. Unlike published protocols, long RNA probes (up to 2.61 kb) readily permeated cryosections and yielded stronger hybridization signals than hydrolyzed probes of equivalent complexity. RNase digestion after hybridization was unnecessary and led to a substantial loss of signal intensity without significantly reducing nonspecific background. Probe concentration was also a key parameter for improving signal-to-noise ratio in ISH. Using these optimized methods on rat taste tissue, we detected mRNA for mGluR4, a receptor, and transducin, a G-protein, both of which are expressed at very low abundance and are believed to be involved in chemosensory transduction. Because the effect of the tested parameters was similar for ISH on sections of brain and tongue, we believe that these methodological improvements for detecting rare mRNAs may be broadly applicable to other tissues. (J Histochem Cytochem 47:431-445, 1999)  相似文献   

14.
 Detection of integrated human papillomavirus type 16 (HPV-16) DNA in SiHa and CaSki cells was used as a model system to demonstrate sensitivity and resolution of a well defined target. Using 293- to 1987-base polymerase chain reaction (PCR)-synthesized probes to the E6 and E7 open reading frames of HPV-16, several fluorescent in situ hybridization (FISH) detection methods, enhanced with tyramide signal amplification (TSA), were compared. The synthetic probes were biotin labeled by a nick translation method and the hybridized probes were detected by various fluorescent TSA methods using cyanine 3 tyramide, biotinyl tyramide and a biotin TSA Plus reagent. High sensitivity detection in SiHa cells was demonstrated using a 619-base probe to detect two single copies of integrated HPV-16 DNA. In CaSki cells, which contain up to 600 copies of HPV-16 DNA, a 293-base probe was used for detection. The results of these comparisons show that with refinement of TSA methods and reagents, increasing levels of high sensitivity detection can be achieved and that these methods allow subnuclear localization as well. Accepted: 20 June 1997  相似文献   

15.
Signal amplification techniques greatly enhance the sensitivity of immunohistochemical (IHC) and in situ hybridization (ISH) methods. In particular, catalyzed signal amplification (CSA) using labeled tyramide or Nanogold-silver staining is an important signal amplification tool. We have applied a combination of both techniques, as has been introduced for ISH, for a further increase in sensitivity of an IHC method to detect cathepsin B. This lysosomal proteinase can also be expressed extracellularly, particularly in relation to cancer metastasis. Higher sensitivity of the IHC method was needed because existing methods failed to demonstrate cathepsin B protein where cathepsin B activity was found with a fluorescence enzyme histochemical method. Combined CSA and Nanogold-silver staining provided the sensitivity that was required. Moreover, this signal amplification method enabled the use of a 10-fold lower concentration of primary antibody (1 microg/ml). Nonspecific background staining was low provided that endogenous biotin, avidin, and peroxidase were completely blocked. The method was reproducible when all steps, and particularly the silver enhancement step, were rigidly controlled. The method resulted in localization patterns of cathepsin B protein that were in agreement with those of cathepsin B activity in serial sections of rat liver containing colon cancer metastases. We concluded that combined application of CSA and Nanogold-silver staining provides high sensitivity for immunohistochemical methods and that activity localization by an enzyme histochemical method is a very attractive alternative to IHC localization of an enzyme because it is at least as sensitive, it is rapid and simple, and it provides direct information on the function of an enzyme.  相似文献   

16.
We describe a method for analyzing the nuclear localization of specific DNA sequences, with special emphasis on their binding status to the nuclear matrix, depending on the developmental stage of the cells. This method employs high-resolution fluorescence in situ hybridization procedures. For our studies, it was important to examine the nuclear localization of a particular gene locus. Previously, however, it was not possible to detect a single-copy genomic sequence using a DNA probe less than several kilobases in size. We describe here a signal amplification technique based on tyramide which makes such a task possible. Using this method, we monitored single-copy loci using a short, 509-bp DNA sequence that binds in vivo to the T cell factor SATB1 within T cell nuclei, high-salt-extracted nuclei (histone-depleted nuclei generating "halos" with distended chromatin loops), and the nuclear matrix, before and after T cell activation. We found that these loci were anchored onto the nuclear matrix, creating new bases of chromatin loops, only after T cell activation. This experimental strategy, therefore, enabled us to detect the changes in higher order chromatin structure upon activation and study gene regulation at a new dimension: the loop domain structure. The methods shown here can be widely applied to explore other functions involving chromatin, including recombination and replication.  相似文献   

17.
A tyramide signal amplification system with biotinylated oligonucleotide probes and streptavidin-horseradish peroxidase was used to increase the sensitivity of fluorescent in situ hybridization techniques. When applied to both gram-negative and -positive bacteria immobilized on glass slides, a 7- to 12-fold amplification of the fluorescence signal was observed relative to that of cells hybridized with fluorescently monolabeled probes. A large proportion (62 to 78%) of bacteria could be detected under starvation conditions and in natural samples from the marine environment. This amplification procedure allows new investigations in marine oligotrophic ecosystems and water quality control.  相似文献   

18.
To understand the biological relationships among various molecules, it is necessary to define the cellular expression patterns of multiple genes and gene products. Relatively simple methods for performing multi-label immunohistochemical detection are available. However, there is a paucity of techniques for dual immunohistochemical (IHC) and mRNA in situ hybridization (ISH) detection. The recent development of improved non-radioactive detection systems and simplified ISH protocols has prompted us to develop a tyramide signal amplification method for sequential multi-label fluorescent ISH and IHC detection in either frozen or paraffin-embedded tissue sections. We used this method to examine the relationship between glial cell line-derived neurotrophic factor receptor alpha2 (GFRalpha2) mRNA expression and IHC localization of its co-receptor Ret in the trigeminal ganglion of postnatal Day 0 mice. We found that approximately 70% of Ret-immunoreactive neurons possessed GFRalpha2 mRNA and virtually all GFRalpha2-expressing neurons contained Ret-immunoreactive protein. Finally, we used paraformaldehyde-fixed, paraffin-embedded sections and a monoclonal antibody against neuron-specific nuclear antigen (NeuN) to demonstrate the neuronal specificity of GFRalpha2 mRNA expression in adult mouse brain. This multi-labeling technique should be applicable to a wide variety of tissues, antibodies, and probes, providing a relatively rapid and simple means to compare mRNA and protein localization.  相似文献   

19.
Technologies are needed to study gene expression at the level of individual cells within a population or microbial community. Fluorescent in situ hybridization (FISH) supplies high-resolution spatial information and has been widely applied to study microbial communities at the rRNA level. While mRNA-targeted FISH has been popular for studying gene expression in eukaryotic cells, very little success has been achieved with prokaryotes. At present, detection of specific mRNAs in individual prokaryotic cells requires the use of in situ RT-PCR or tyramide signal amplification (TSA). In this study we used DNA oligonucleotide probes labeled with a single near-infrared dye in FISH assays to detect multi-copy plasmid-based and endogenous mRNA molecules in Escherichia coli and Shewanella oneidensis MR-1. We took advantage of the fact that there is much less background signal produced by biological materials and support matrices in the near-infrared spectrum and thus long camera exposure times could be used. In addition, we demonstrate that a combination of probes targeting both rRNA and mRNA could be successfully employed within the same FISH assay. These results, as well as ongoing R&D improvements in NIR and infrared dyes, indicate that the FISH approach we demonstrated could be applied in certain environmental settings to monitor gene expression in mixed populations.  相似文献   

20.
Fluorescent immunocytochemistry (FICC) allows multiple labeling approaches when enzyme-based techniques are difficult to combine, such as in double-labeling experiments targeting small-caliber axonal segments. Nevertheless, the conversion of FICC to a product visible at the electron microscopic (EM) level requires labor-intensive procedures, thus justifying the development of more user-friendly conversion methods. This study was initiated to simplify the conversion of FICC to EM by employing the unique properties of tyramide signal amplification (TSA), which allowed the simultaneous targeting of a fluorescent tag and biotin label to the same antigenic site. Briefly, one of two antigenic sites typically co-localized in damaged axonal segments was visualized by the application of a fluorescent secondary antibody, with the other tagged via a biotinylated antibody. Next, an ABC kit was used, followed by the simultaneous application of fluorophore-tyramide and biotin-tyramide. After temporary mounting for fluorescent digital photomicroscopy, sections were incubated in ABC and reacted with diaminobenzidine before EM analysis. Double-labeling fluorescent immunocytochemistry with TSA clearly delineated damaged axonal segments. In addition, these same axonal segments yielded high-quality EM images with discrete electron-dense reaction products, thereby providing a simple and reproducible means for following fluorescent analysis with EM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号